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Hyperspectral Analytics 
in ENVI: Target 

Detection and Spectral 
Mapping Methods 

INTRODUCTION 
The use of imaging spectrometers has gained popularity in the last 20 years, with 
applications in geology (e.g., Boardman and Kruse 1994; Kosanke and Chen 2017), 
defense and intelligence (e.g., Probasco 2017; Puckrin et al. 2012), precision agriculture 
(e.g., Martin and George 2018; Yang 2015), and atmospheric science (e.g., Matsunaga 
2015).  

Airborne and spaceborne spectrometers contain dozens or hundreds of narrow spectral 
bands that provide near-continuous reflectance spectra of earth surface features, 
spanning the visible and near-infrared (VNIR) to shortwave-infrared (SWIR) wavelength 
range. Examples include AVIRIS (NASA JPL 2018), HYDICE (Mitchell 1995), and CRISM 
(John Hopkins University APL 2018).  

While multispectral imagery can be used to discriminate between different surface 
materials, imaging spectroscopy—also called hyperspectral imaging—provides even more 
powerful capabilities. These include exploiting unique spectral signatures and absorption 
features of materials to estimate the sub-pixel abundance of materials or to detect spectral 
targets of interest.  

ENVI® software has traditionally been the software application of choice for analyzing 
hyperspectral data, whether it involves scientific research or making tactical decisions. 
With dozens of tools available for analyzing multispectral and hyperspectral data, the 
choice of which tools to use and what process to follow can be daunting for users who are 
new to imaging spectroscopy. This paper helps answer questions such as, “How do I get 
started?” and “What tools do I need?”  

While not every possible hyperspectral application can be addressed here, recommended 
workflows are provided for two common scenarios: (1) locating specific targets of interest, 
and (2) determining what spectrally unique materials exist in a scene.  

This paper does not provide instructional steps for using hyperspectral tools in ENVI; 
however, it does provide some overall guidance on using them. Caveats and tips for 
working with hyperspectral data in ENVI are provided, such as: 

• Being aware of limitations and expected results with data

• Knowing when to correct for atmospheric effects and when to apply other
preprocessing steps

• Collecting image and reference spectra

• Interpreting results from different workflows and understanding that not all results are
absolute, quantitative values

• Learning why certain tools are needed and what value they offer, rather than
exploring the details of the algorithms

A basic understanding of imaging spectroscopy will be helpful. Consult the references at 
the end of this paper for background information, or refer to the ENVI Help. The ENVI 
tutorials mentioned throughout this paper are available from the Harris Geospatial 
Solutions web site (www.harrisgeospatial.com). 

Before analyzing data from an imaging spectrometer, it is important to know the limitations 
of the data. The next section provides some guidance on things to consider. 

KNOWING YOUR DATA 
Analysts can easily make the common mistake of relying too much on the application to 
produce a quick answer without considering the limitations of the data. Often, the results 
are not what they expect because of incorrect assumptions about the collecting platform 
and the data. This section provides some important questions to consider before doing 
any spectral analysis. 

Sensor Characteristics 
The type of sensor used to collect the scene determines how the digital values are stored 
and interpreted. With spaceborne and airborne sensors—including unmanned aerial 
vehicles (UAVs)—it is important to know the scanning direction. There are two main 
categories: pushbroom and whiskbroom sensors. 

http://www.harrisgeospatial.com/
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A pushbroom sensor (also called an along-track sensor or line scanner) scans incoming 
radiation along the same direction as the satellite path and collects a line of data at a time 
for all wavelengths. The radiation is sent to solid detectors to record as digital values 
(Chuvieco 2016). Examples of pushbroom sensors include HYDICE, CASI, and EO-1 
Hyperion. 

A whiskbroom sensor (also called an across-track sensor) uses a rotating mirror to scan 
incoming radiation in a perpendicular direction to the satellite path. It captures the entire 
field of view (FOV) at a time in a given wavelength and then repeats the process for a 
slightly different wavelength. Examples of whiskbroom sensors include AVIRIS and 
HyMap. Fowler (2014) compares pushbroom and whiskbroom sensors as they relate to 
imaging spectrometers. 

Figure 1: Simplified concepts of pushbroom sensor (left) and whiskbroom sensor (right). 

The signal-to-noise characteristics of these two collection methods can be vastly different. 
In addition, some sensors such as EO-1 Hyperion contain artifacts that can distort images 
(Yokoya, Miyamura, and Iwasaki 2010). 

Analysts should also be familiar with the level of processing that was applied to image 
data. Data providers typically process the data to remove geometric and radiometric errors 
associated with the motion of the sensing platform. Also, are the image pixels raw DN 
values, or have they been calibrated to radiance by the data provider? The ENVI 
Preprocessing AVIRIS Tutorial provides more detail on this subject. 

Finally, knowing the altitude of the sensor can determine the thickness of the atmosphere 
to correct for. See the Atmospheric Correction section on page 7 for a summary of 
correction tools available in ENVI. 

Resolution 
Consider the spatial resolution of the image, which is the resolution of the smallest object 
that can be detected. For example, if a pixel is 30 square meters in size (as with EO-1 
Hyperion) or even 18 square meters (as with the Mars Reconnaissance Orbiter’s CRISM 
instrument), much of the information in the pixel will be lost. One or two materials 
(minerals, for example) will dominate the signal in a given pixel, even though far more 
materials may be within that instantaneous field of view (IFOV). With increased pixel 
sizes, analysts will never get a true representation of the actual content, compared to what 
may be identified in situ, although they can get an overall sense of what it contains. 

Knowing the spectral resolution of the data—the number of bands and their 
ranges/centers—is critical for ensuring that the data captures a specific absorption feature 
of interest (Figure 2). 
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Figure 2: A comparison of spectral profile curves for various minerals. Arrows point to diagnostic  
absorption features. 

Using a mineralogy example, differentiating between the absorption features of Fe-, Mg-, 
and Al-OH requires sampling of several spectral bands within the range of 2.1 µm to 2.3 
µm. Each of these features produces a characteristic absorption band within that range 
because of differences in molecular vibration; however, the difference between band 
centers may be very small (e.g., 2.30 µm for Mg-OH and 2.29 µm for Fe-OH). A benefit of 
hyperspectral analysis in the VNIR region is that it is sensitive to these subtle differences. 
When targeting a specific mineral, the band centers of the detectors should align with the 
characteristic absorption features for that mineral; otherwise, it can be easy to miss the 
absorption features, which can result in misidentifications.  

Also, it is important to ensure that the bands cover the same range of an absorption 
feature of interest. For example, some materials such as quartz lack diagnostic 
absorptions in the VNIR range, and instead have diagnostic absorptions in the middle-
infrared (roughly 3 to 40 µm). These materials cannot be detected with VNIR bands and 
require different sensors for detection. 

The next section describes common preprocessing steps to prepare data for spectral 
analysis. 

PREPARING DATA FOR ANALYSIS 
A fair amount of preprocessing is needed to reduce noise and erroneous data from 
hyperspectral imagery before meaningful information can be extracted from it. This 
involves removing bad bands, masking out unwanted features, correcting for atmospheric 
effects (for spaceborne and airborne sensors), and transforming hyperspectral data into a 
different image space to reduce its dimensionality.  

Geometric correction is also a consideration, along with properly preparing reference 
spectra. These are also discussed. 

Removing Bad Bands 
Some bands in imaging spectrometers can produce significant noise, particularly in 
wavelengths associated with atmospheric absorption and water vapor. These bands need 
to be removed before subsequent processing. 

A recommended approach to identifying bad bands is to create a spectral profile in ENVI 
for any given pixel. Look for spikes in the plot (Figure 3).  
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Figure 3: Spectral profile curve of an AVIRIS data pixel showing spikes and gaps in the spectrum. 

Or, use the Band Animation tool (Figure 4) to visually inspect each band, and note the 
bands that appear noisy. This capability is available by right-clicking on an image in the 
Layer Manager and selecting Band Animation. 

Figure 4: Using the Band Animation tool to animate a hyperspectral image with 180 bands. 

Once the bad bands have been identified, there are two ways to remove them from further 
analysis. 

Define Bad Bands in the Image Metadata 

Bands can be marked as “bad” to indicate that they should be ignored in subsequent 
processing. The Bad Bands List in the Edit ENVI Header tool can be used to exclude 
specific bands. The Edit ENVI Header tool is available in the ENVI Toolbox under the 
Raster Management category. The bands are not actually removed from the original 
image; they are just marked as bad. The associated header file (.hdr) that accompanies 
the hyperspectral image is then updated with the list of bad bands. 

Note: The FLAASH atmospheric correction tool determines bad bands based on the 
strength of the reflectance signal, and it automatically updates the ENVI header file that 
accompanies the output reflectance image. 

With EO-1 Hyperion data, bands 1-7, 58-76, and 221-242 are automatically set to values 
of 0 by the data provider (Barry 2001). Also, bands 121-126 and 167-180 have severe 
noise that correspond to strong water vapor absorption and should be removed from 
processing (Datt et al. 2003). 

Define a Spectral Subset 

Another way to exclude bad bands from processing is to define a spectral subset of the 
good bands from the original image, then save that to a new image. 
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Geometric Correction 
When creating maps of material distribution or spectral targets, imagery should be 
georeferenced to a standard map projection. Some data providers distribute map-ready 
image products; for example, EO-1 Hyperion L1G, L1Gst, and L1T products. Some UAV 
images have no spatial reference but are delivered with separate geographic lookup table 
(GLT) images or input geometry (IGM) images that can be applied to create 
georeferenced data. An example is imagery from the Corning microHSI imaging 
spectrometer. 

The Geometric Correction folder of the ENVI Toolbox contains a wide range of correction 
tools, from building/applying GLTs and IGMs to rigorous orthorectification. Refer to the 
Geographic Positioning Tools topic in ENVI Help. 

Masks 
Some image pixels in a scene can compromise the spectral integrity of the data. These 
include image borders, stripes and other bad data, clouds, cloud shadows, and water. 
These should be masked out prior to analysis. Refer to the Masks topic in ENVI Help for 
guidance on applying masks to images. 

Atmospheric Correction 
The effects of atmospheric absorption and scattering in the VNIR wavelengths are 
pronounced in data acquired from spaceborne and airborne imaging spectrometers. The 
composition and thickness of the atmosphere varies spatially and over time, which distorts 
the perceived reflectance and absorption signals of materials detected by the sensors 
(Bedell and Coolbaugh 2009). These effects must be accounted for and corrected before 
doing any spectral analysis. 

Raw pixel values (also called digital numbers or DN values) should be calibrated into 
physically meaningful units. The three most common radiometric corrections are radiance, 
top-of-atmosphere (TOA) reflectance, and apparent surface reflectance. The type of 
calibration to apply depends on the intended application. 

Radiance or uncalibrated data can be used as input to spectral analysis tools that do not 
require any external reference spectra and where spectral endmembers can be derived 
from the image alone. Examples include Minimum Noise Fraction (MNF), Pixel Purity 
Index (PPI), Matched Filtering (MF) and Mixture-Tuned Matched Filtering (MTMF). 

If library spectra will be used associate image endmembers to known materials, then the 
image data must be in units of reflectance and must be scaled to match the range of the 
library spectra. See the Reference Spectra section on page 12 for tips. In most cases, 
pixel values should range from 0 to 1, which represents 0 to 100% reflectance. The 
Spectral Analyst, Spectral Angle Mapper (SAM) classification, and Spectral Feature Fitting 
expect the data to be in units of reflectance, not radiance. Calibrating imagery to surface 
reflectance also ensures consistency when constructing a time series of data or fusing 
data from different sensors. Atmospheric correction tools can be used to calibrate data to 
apparent surface reflectance. 

Minu and Shetty (2015) compare and contrast the most commonly used methods for 
atmospheric correction of hyperspectral imagery, including some that are available in 
ENVI.  

Next is a summary of the atmospheric correction tools that ENVI provides. 

QUick Atmospheric Correction (QUAC®) 

QUAC is a scene-based empirical method that converts radiance values to apparent 
surface reflectance. Scene-based means that the atmospheric correction parameters are 
derived strictly from the pixel spectra within the scene and not from any ancillary data. A 
separate license for the ENVI Atmospheric Correction Module is required to use QUAC. 

QUAC is the simplest atmospheric correction tool to use in ENVI. It accommodates a wide 
range of wavelengths (VNIR to SWIR, approximately 0.4 to 2.5 µm) and sensors. The 
input scene should contain a variety of spectrally diverse materials—at least 10—such as 
water, soil, vegetation, and man-made structures (Bernstein et al. 2012). It performs best 
when the imagery is uniformly illuminated, such as in clear-sky conditions or when 
airborne sensors fly under complete cloud cover. 
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Where to Find It 

• ENVI Toolbox  Radiometric Correction  Atmospheric Correction Module  Quick 
Atmospheric Correction (QUAC)

• Included in the Target Detection Wizard

Fast Line-of-sight Atmosphere Analysis of Spectral Hypercubes (FLAASH®) 

FLAASH is a physics-based method that incorporates MODTRAN® radiative transfer code 
to model atmospheric water vapor and aerosols. A separate license for the ENVI 
Atmospheric Correction Module is required to use FLAASH. It is the most rigorous 
atmospheric correction method available in ENVI and produces accurate surface 
reflectance data, but it contains many parameters and requires significant user input. The 
input data must be a radiance image in band-interleaved-by-line (BIL) or band-interleaved-
by-pixel (BIP) format. For hyperspectral sensors, the associated ENVI header file of the 
input image must have wavelengths defined. 

Conversion of radiance data to reflectance using FLAASH can introduce artifacts into the 
spectra. These artifacts can result from any of the following factors: 

• Mismatches in the spectral calibration of the hyperspectral dataset and the spectral
radiative transfer calculations

• Errors in the absolute radiometric calibration

• Errors in the radiative transfer calculations

Refer to the Preprocessing AVIRIS Data Tutorial for an example that uses FLAASH. The 
artifacts described here can occur with any imaging spectrometer, not just AVIRIS. 

Where to Find It 

• ENVI Toolbox  Radiometric Correction  Atmospheric Correction Module 
FLAASH Atmospheric Correction

• Included in the Target Detection Wizard

Empirical Methods 

The following methods can be used as alternatives to removing the effects of the 
atmosphere. However, they only provide crude approximations and do not calibrate image 
data to apparent surface reflectance. 

Empirical Line 

The Empirical Line correction method requires an analyst to collect field or laboratory 
reflectance spectra, and also to identify dark and bright regions in the image. Calibration 
targets can be helpful in this case. The image spectra are forced to match the field 
spectra. This is equivalent to removing solar irradiance and atmospheric path radiance. 

Where to Find It 

• ENVI Toolbox  Radiometric Correction  Empirical Line Compute Factors

• ENVI Toolbox  Radiometric Correction  Empirical Line Correct Using Existing 
Factors

• Included in the Target Detection Wizard

Internal Average Relative (IAR) Reflectance 

The IAR Reflectance empirical correction method computes the mean spectrum of the 
entire scene, then divides it into the radiance value for each band of every pixel. The 
result is an image of relative reflectance. Its accuracy can vary considerably because it is 
tied to the most abundant material in a scene (Bernstein et al. 2012). IARR produces 
relatively good reflectance measurements in cases where the most abundant material is 



Non-Export Controlled Information 9 Hyperspectral Analytics in ENVI 

spectrally flat, such as arid scenes with little vegetation (Kruse, Raines, and Watson  
1985). 

Where to Find It 

• ENVI Toolbox  Radiometric Correction  IAR Reflectance Correction

• Included in the Target Detection Wizard

Flat Field 

The Flat Field empirical correction method requires an analyst to define a ROI around a 
spectrally flat area in a scene, preferably one with a high albedo. The mean spectrum of 
the flat field ROI is divided by the spectrum of each pixel in the scene. This normalizes the 
entire scene, yielding relative reflectance values (Roberts, Yamaguchi, and Lyon 1986). A 
drawback to this method is that most spectrally flat areas still contain a lot of spectral 
variation even though they visually appear to be the same. Experimentation with different 
display stretches can help to locate the best representative sample of a flat field. Also, 
because it does not include any baseline subtraction (as with Dark Subtraction), it can 
magnify errors resulting from dark pixels (Bernstein et al. 2012).  

Where to Find It 

• ENVI Toolbox  Radiometric Correction  Flat Field Correction

• Included in the Target Detection Wizard

Dark Subtraction 

The Dark Subtraction method attempts to remove the effects of atmospheric scattering 
from a scene (particularly in the blue wavelength region) by subtracting a specific value 
from every pixel. This value represents a background signature. It can be the band 
minimum, a mean value based on a region of interest (ROI), or a user-specified value.  

Where to Find It 

• ENVI Toolbox  Radiometric Correction  Dark Subtraction

• Included in the Target Detection Wizard

Log Residuals 

The Log Residuals correction method uses in-scene statistics to produce a pseudo-
reflectance image that is useful for analyzing mineral-related absorption features (Green 
and Craig 1985). It is rarely used.  

Where to Find It 

• ENVI Toolbox  Radiometric Correction  Log Residuals Correction

• Included in the Target Detection Wizard

Spectral Dimensionality Reduction 
A common issue in remote sensing is that adjacent spectral bands often contain 
redundant information. This is because the bands occupy similar spectral regions, or 
because some materials have similar radiance values across spectral regions (Chuvieco 
2016). Statistically speaking, adjacent bands are often highly correlated.  

This issue is more pronounced with hyperspectral data because of its oversampled 
nature. With hundreds of bands of data, the data dimensionality increases significantly. 
Each contiguous, narrow band of data contains information that is not unique. Only a 
small portion of each band contributes to the overall signal, with the remainder attributed 
to noise. Bands that correspond to spectral regions of atmospheric water absorption 
contain severe noise and are useless as they have no correlation with adjacent bands. 
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Data transforms are typically used to reduce the dimensionality of datasets and to 
separate noise from signals. Transforming data into a different space can often reveal 
spectral features that otherwise would not be found. Methods such as Principal 
Components Analysis (PCA) and Minimum Noise Fraction (MNF) can be used in ENVI to 
determine the intrinsic, or inherent, dimensionality of a dataset. This refers to the smallest 
number of dimensions or variables necessary to model the data without incurring loss 
(Kirby 2001). Once the inherent dimensionality has been determined, the original, high-
dimensional dataset is then replaced with the lower-dimensional dataset.  

When using hyperspectral data to map the distribution of materials, analysts should 
ensure that the reduced bands will adequately characterize the materials of interest. For 
example, if a transformed image with only 10 bands is used to identify 20 different 
minerals, the mineral identification map can contain many false positives and false 
negatives. 

Machine learning applications typically do not need spectral dimensionality reduction 
because they automatically discard irrelevant data.  

PCA is a commonly used method, but the resulting PC bands contain noise and data. This 
is less of an issue when performing classification or feature extraction with hyperspectral 
data, but it should not be used as a preprocessing step for material identification. Ren et 
al. (2014) describe how PCA does not effectively produce the intended results with large 
hyperspectral datasets. 

Minimum Noise Fraction (MNF) 

MNF is the preferred method for reducing spectral dimensionality in hyperspectral data 
because it has the added benefit of separating noise from data. This is critical for 
applications like material identification where the goal is to identify the purest spectral 
endmembers in a scene. MNF reduces a dataset to its inherent dimensionality by retaining 
only the coherent bands and discarding the remaining noisy bands. 

Where to Find It 

• ENVI Toolbox  Transform  MNF Rotation  Forward MNF Estimate Noise 
Statistics

• Included in the ENVI Spectral Hourglass Wizard

• Included in the Target Detection Wizard

The ENVI implementation of MNF is based on the method described in Green et al. (1988) 
with some modifications. First, it estimates the noise in an image. In most cases, noise 
statistics are calculated directly from the data itself based on a shift difference method that 
uses local pixel variance. Analysts can optionally select a spatial subset of an image, or 
specify a group of pixels in a spectrally flat area, to improve noise estimates. The number 
of selected pixels must be greater than the number of bands in the image. The result of 
this step is a noise covariance matrix. 

An initial PC transform uses the estimated noise covariance matrix to decorrelate and 
rescale the noise such the transformed data has unit variance and no band-to-band 
correlation. A second PC transform is then applied to that transformed data. The result is 
a set of MNF-transformed bands.  

The key process with MNF is determining the threshold at which the bands transition from 
signal to noise. This is referred to as spatial coherence. The lower bands are expected to 
have spatial structure and will contain most of the information. These are called coherent 
images. Higher MNF bands are expected to have little spatial structure and will contain 
most of the noise. The bands are ranked with the largest amount of variance in the first 
few bands and decreasing amounts of variance in the remaining bands. 

An MNF Eigenvalue plot shows the eigenvalue for each MNF-transformed band 
(eigenvalue number). Figure 5 shows an example after performing an MNF transform on 
191 bands of AVIRIS data. 



Non-Export Controlled Information 11 Hyperspectral Analytics in ENVI 

Figure 5: Example MNF eigenvalue plot. 

Larger eigenvalues (along the Y-axis) indicate higher data variance in the transformed 
band. When the eigenvalues approach 1, only noise is left in the transformed band. Using 
Figure 5 as an example, this occurs near MNF Band 8.  

The MNF step in the Spectral Hourglass Wizard further provides the ability to animate 
through the MNF bands, to visually determine where significant noise begins to occur. 
Figure 6 shows an example where MNF band 8 begins to reveal speckling noise. The data 
dimensionality can be estimated by finding the last spatially coherent MNF image (MNF 
band 8 in this example).  

Figure 6: Animating through 191 MNF-transformed bands. 

The Spectral Hourglass Wizard provides another method for more accurately determining 
the spatial coherence threshold. In the Determine Data Dimensionality panel, clicking the 
Calculate Dimensionality button displays a Spatial Coherence Threshold plot (Figure 7). 
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Figure 7: Automatically calculating data dimensionality in the Spectral Hourglass Wizard. 

The plot shows a best guess for the number of coherent bands. Analysts can modify the 
Threshold Level as needed to separate signal from noise. In Figure 7, this value is set to 
0.47. Note that the number of bands above this threshold is 9. Accepting this threshold 
means that the data dimensionality has now increased from 8 to 9. Thus, Bands 1-9 
represent coherent images, and Bands 10-191 represent noise. 

The MNF step of the Spectral Hourglass Wizard gives a reasonable estimate of data 
dimensionality; however, the process is complicated by nature and is dependent on the 
particular scene. It is better to overestimate the dimensionality by using all of the MNF 
bands that have reasonable image quality and/or eigenvalues that are above unity. 

Reference Spectra 
This section describes the use of spectral libraries or field/laboratory spectra as ground 
truth, or reference, data. Before continuing, a distinction should be made between the two 
primary scenarios when working with hyperspectral data. 

In the first case, analysts have a scene whose composition and spectral endmembers are 
unknown. They want to determine the endmembers that are present in the scene. Tools 
such as the ENVI Spectral Hourglass Wizard and Linear Spectral Unmixing are used to 
derive endmember spectra directly from the image to determine the composition of the 
scene, without relying on ancillary or reference spectra. These tools are discussed in more 
detail later in this paper. 

In the second case, analysts have a scene whose composition and spectral endmembers 
are unknown, but they are not concerned with the overall composition. They only want to 
know the locations of a specific material of interest (a target). Reference spectra from a 
spectral library are used to locate targets and to separate them from non-target, or 
background, pixels. Reference spectra can even include a group of pixels from the scene 
that have a high certainty of representing a known material. See the Target Detection 
section on page 15. 

This discussion pertains to cases when reference spectra are used. The most common 
type of reference spectra are spectral libraries. 
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Spectral Libraries 

When researchers use spectrometers in the field or laboratory to collect complete spectral 
signatures of materials, they can build libraries of multiple spectra (Figure 8). Many 
spectral libraries are available for public access, such as these well-known libraries: 

• U.S. Geological Survey (https://speclab.cr.usgs.gov/spectral-lib.html)

• ECOSTRESS, which includes data from John Hopkins University, NASA Jet
Propulsion Laboratory, and the U.S. Geological Survey (https://speclib.jpl.nasa.gov/)

• SPECCHIO Spectral Information System (http://www.specchio.ch/)

• CRISM Spectral Library
(http://pds-geosciences.wustl.edu/missions/mro/spectral_library.htm)

These libraries do not contain spectra for every possible material, so analysts may need to 
track down or create additional reference spectra for the exact materials they are 
interested in. In summary, analysts should have a general sense of what materials may be 
in a scene and ensure that all of the relevant library spectra are available for reference. 

Figure 8: Spectral Library Viewer in ENVI, showing two vegetation spectra. 

Where to Find Spectral Library Tools 

• ENVI main menu bar  Display  Spectral Library Viewer

• ENVI Toolbox  Spectral  Spectral Library Builder. Use this tool to import spectra
from external libraries.

• ENVI Toolbox  Spectral  Spectral Library Resampling

Other Reference Spectra 

In addition to spectral libraries, reference spectra can also come from plots, text files, 
statistics files, binary ASD spectrometer files, and regions of interest (ROIs). An ROI is a 
group of pixels (in the form of points, polylines, or polygons) that an analyst identifies with 
a high degree of certainty as containing a material of interest. With polygon ROIs, the 
mean value is used as the reference spectrum. 

Ensuring Consistency with Image Spectra 

If spectral libraries or other reference spectra are used in hyperspectral image analysis, 
they should be consistent with the image spectra. Consider the following: 

• The units of the spectral library measurements: reflectance, downwelling irradiance,
or others

• Any scaling that has been applied to the library spectra

• The wavelength range covered by the library spectra

https://speclab.cr.usgs.gov/spectral-lib.html
https://speclib.jpl.nasa.gov/
http://www.specchio.ch/
http://pds-geosciences.wustl.edu/missions/mro/spectral_library.htm
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For example, a spectral library that contains irradiance values cannot be used directly with 
an image whose pixels represent reflectance values. Likewise, a material of interest may 
not be identified in an image if the bands do not cover the same wavelength range as the 
reference spectra. Figure 9 shows a plot that compares spectrometer data collected in a 
laboratory for a blue vinyl tarp, and a hyperspectral image pixel of a blue vinyl tarp. The 
units are the same for both spectra (micrometers), and they cover the same wavelength 
range (0.48 to 2.5 µm). 

Figure 9: Spectral profile curves of reference spectra (red) and image spectra (grey). 

Reference spectra may need to be resampled to match image spectra. The Spectral 
Library Resampling tool can resample spectral libraries to match the response of a known 
instrument such as AVIRIS, an ASCII wavelength file, or the wavelengths of an image file. 

The ENVI Band Math tool can be used to scale image pixel values to the range of spectral 
library data values. For example, some atmospheric correction methods scale pixel values 
by 10,000 so that they range from 0 to 10,000. However, most spectral libraries have data 
that range from 0 to 1, as in Figure 9 above. In this case, the image pixel values should be 
scaled by a value of 0.0001 to match the data range of the spectral libraries. 

Importing Reference Spectra Into a Workflow 

The Endmember Collection tool can be used to collect reference spectra from multiple 
sources. Figure 10 shows an example. The Endmember Collection tool is available in the 
ENVI Toolbox under the Classification category. 

Some tools such as the Target Detection Wizard and Spectral Hourglass Wizard have the 
Endmember Collection dialog built into them so that it does not need to be invoked 
separately. 

Figure 10: Endmember Collection dialog listing field spectra imported from ASCII files. 
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TARGET DETECTION 
A common use of hyperspectral imagery is locating a material of interest (a target), or 
discriminating between multiple targets based on their spectral characteristics (Manolakis, 
Lockwood, and Cooley 2016). Examples include man-made structures, vehicles, and 
minerals. 

Target detection methods look at the spectrum of each pixel to determine whether a target 
is present or not, based on a known spectral signature. Typically, the target only 
represents a small fraction of the pixels in the entire scene. The remaining pixels 
represent the background. Thus, the goal of target detection is to identify known spectral 
targets in an unknown background. The ability to resolve a target depends on the spatial 
resolution of the sensor. Some target detection methods incorporate an element of 
spectral unmixing (discussed later in this paper) to make a decision on whether or not a 
pixel represents a given target when the pixel contains mixed materials. The Mixture-
Tuned Matched Filtering (MTMF) method is an example. 

Figure 11 shows the recommended workflow for target detection in ENVI when using 
hyperspectral data from an airborne or spaceborne sensor. Dashed lines indicate optional 
steps. 

Figure 11: Target detection workflow. 

Correcting for Atmospheric Effects (Optional) 
Hyperspectral data from airborne and spaceborne sensors should be corrected for 
atmospheric effects.  Most images should be converted to apparent surface reflectance 
using atmospheric correction techniques before running target detection, especially if 
library or other reference spectra are used to define targets. These spectra are often 
recorded in units of reflectance. See the Atmospheric Correction section on page 7 for 
details on the various methods used. 
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Selecting Target Spectra 
The next step is specifying the spectra of the targets of interest. The target spectra 
typically come from spectral libraries. See Reference Spectra on page 12  for tips on 
collecting spectra. Figure 12 shows a spectral library of roofing materials that will be used 
as reference spectra.  

Figure 12: Example of selecting target spectra from a spectral library. 

Some target detection methods require more than one target spectrum. See Selecting 
Target Detection Methods on page 17 for details. 

Selecting Background Spectra (Optional) 
Selecting non-target (background) spectra can improve the target detection result when 
using the Orthogonal Subspace Projection (OSP), Target-Constrained Interference-
Minimized Filter (TCIMF), and Mixture Tuned Target-Constrained Interference-Minimized 
Filter (MTTCIMF) methods. These methods are discussed later. Background spectra are 
unnecessary for other methods. The background spectra can come from spectral libraries, 
individual spectral plots, text files, ROIs, or statistics files. See Reference Spectra on page 
12 for tips on collecting spectra. Figure 13 shows how ROIs were drawn around 
vegetation, shadows, and soils with mixed materials, to exclude them from consideration 
when looking for matches of specific roofing materials. The ROI means are used as the 
non-target spectra (Figure 14). 

Figure 13: Using ROIs to identify non-target pixels. 
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Figure 14: Using ROI means for the non-target spectrum. 

Applying MNF Transforms 
Using MNF to reduce spectral dimensionality is generally unnecessary for target 
detection; however, it depends on the application. Redundant information from adjacent 
wavelengths can actually help locate better matches to targets. As long as computer 
memory and speed are not an issue, using the original (non-transformed) data can 
produce the best results with target detection. Jin, Paswaters, and Cline (2009) 
recommend preserving the full dimensionality of the data. Since the target is usually a 
small fraction of all the pixels, it does not contribute much to the covariance matrix and 
may be hidden in some of the higher MNF bands. 

Note, however, that the MTTCIMF and MTMF methods require the data to be in MNF 
space, as these methods are also used for determining the relative sub-pixel abundance 
of materials. See Minimum Noise Fraction (MNF) on page 10 for more information about 
creating MNF-transformed data. 

Selecting Target Detection Methods 
ENVI provides a variety of methods for target detection. Jin, Paswaters, and Cline (2009) 
summarize and compare these methods in more detail. Experimenting with different 
methods may be needed to achieve the intended results for a particular application 
(Figure 15).  

Figure 15: Selecting target detection methods and setting advanced parameters. 

Adaptive Coherence Estimator (ACE) 

The ACE method determines if a pixel spectrum possibly consists of a known target 
signature. It is best used when the background conditions are variable and unknown. It 
does not vary based on the relative scaling of input spectra, and it does not require 
knowledge of all the endmembers within a scene (Kraut, Scharf, and Butler 2005; 
Manolakis, Marden, and Shaw 2003). It performs well with detecting sub-pixel targets. 
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Constrained Energy Minimization (CEM) 

The CEM method does not require knowledge of all the endmembers within a scene. A 
correlation or covariance matrix is required in order to model the composite unknown 
background over the whole scene (Harsanyi 1993; Chang et al. 2000). The CEM method 
works similarly to the OSP method, but it can do a better job of removing unidentified 
signals and suppressing noise than the OSP method. However, it does not generalize well 
because it is sensitive to the knowledge of the desired signature (Du, Ren, and Chang 
2003). 

Matched Filtering (MF) 

The MF method is based on the same theory as the CEM method and was originally 
designed for target detection applications in signal processing. It detects specific materials 
based on matches to target spectra and does not require knowledge of all the 
endmembers within an image. However, it does not properly account for spectral unmixing 
in hyperspectral data.  

Pixels that contain rare materials (unrelated to the target of interest) can give false positive 
responses, which cannot be distinguished from the actual target responses. Because 
these rare materials occur in only a few pixels, they do not contribute to the background 
covariance and are not properly ignored by the MF process. The rare materials may 
exhibit spectra that are different from the target spectra, yet they can have the same score 
as the target spectra, thus indicating a perfect match to the target. Also, the MF method 
does not discriminate well among rare targets with similar spectral signatures (Boardman 
and Kruse 2011). Consider using the MTMF method instead. 

Mixture Tuned Matched Filtering (MTMF) 

The MTMF method (Boardman 1998) improves upon the MF method by providing better 
selectivity of targets. It is useful for detecting and discriminating among multiple rare 
targets whose spectral signatures are similar to the background. The MTMF method 
recognizes that targets actually replace some of the background signature in a pixel, not 
add to them. It uses the same statistical method as MF but incorporates elements of a 
linear mixing model. It can provide accurate mapping of very small sub-pixel targets with a 
low number of false positives (Boardman and Kruse 2011). 

The MTMF method requires an MNF-transformed image for input. It calculates an MF 
Score along with an infeasibility measure, which describes the likelihood of each pixel 
being a mixture of the known target and background materials. The infeasibility measure 
allows analysts to identify and reject false positives.  

Mixture Tuned Target-Constrained Interference-Minimized Filter (MTTCIMF) 

The MTTCIMF method (Jin, Paswaters, and Cline 2009) combines the MTMF and TCIMF 
methods. It requires MNF-transformed data for input. If background spectra are provided, 
the MTTCIMF method can potentially reduce the number of false positives as compared to 
the MTMF method.  

Orthogonal Subspace Projection (OSP) 

The OSP method (Harsanyi and Chang 1994; Chang 1998) is related to the MF and CEM 
methods. It eliminates the response of non-targets, then applies MF to match the desired 
target from the data. Two or more target spectra must be provided, along with background 
spectra. These can be derived from the image. The OSP method is efficient and effective 
when target signatures are distinct. When the target signature and background signature 
are similar, the attenuation of the target signal is dramatic and the performance of OSP 
can be poor. Refer to Du, Ren, and Chang (2003) for a comparison of the OSP method 
with the CEM method. 

Spectral Angle Mapper (SAM) 

The SAM method (Kruse et al. 1993) determines the similarity between image spectra and 
reference target spectra by measuring their spectral angle in n-dimensional space (where 
n is the number of bands), without characterizing the background. Smaller angles 
represent closer matches to the reference spectrum.  
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Target-Constrained Interference-Minimized Filter (TCIMF) 

The TCIMF method (Ren and Chang 2000) detects the desired targets, removes the 
background influence, and minimizes interference in one operation. A correlation or 
covariance matrix is required in order to model the composite unknown background over 
the whole scene. Previous studies (Johnson 2003; Chang 2003) show that if the spectral 
angle between the target and background is significant, the TCIMF method can potentially 
reduce the number of false positives over CEM results. Two or more target or background 
spectra must be provided. 

Modeling the Subspace Background (Optional) 

The ACE, CEM, MF, MTMF, MTTCIMF, and TCIMF methods provide an additional option 
to model the scene background by removing anomalous pixels before calculating 
background statistics. This can better separate targets from the background, resulting in 
improved performance in scenes that contain a lot of clutter or man-made objects. A 
Reed-Xiaoli (RX) anomaly image is created internally. Areas detected as anomalous are 
excluded from the calculation of the background statistics. 

The Background Threshold value is the fraction of the background in the anomalous 
image to use. Values can range from 0.5 to 1, where 1 means that the entire anomaly 
image will be used to calculate the background statistics. Setting the threshold to 0.8 
means that 80% of the pixels with the lowest anomaly values will be used to calculate the 
background statistics. 

Previewing Rule Images 
The initial results of most methods are presented as greyscale rule images, one for each 
specified method. The rule images can be interpreted differently for each method. 

For the MF, ACE, CEM, OSP, and TCIMF methods, higher brightness values indicate 
closer matches to the target spectrum and higher probabilities of being a target (Figure 
16). 

Figure 16: NEON hyperspectral image (left) and OSP rule image with Gaussian display stretch 
applied (right). The target is galvanized metal roofing. 



Non-Export Controlled Information 20 Hyperspectral Analytics in ENVI 

For the SAM method, lower brightness values represent closer matches to the target 
spectrum and higher probabilities of being a target (Figure 17). 

Figure 17: NEON hyperspectral image (left) and SAM rule image with logarithmic display stretch 
applied (right). The target is galvanized metal roofing. 

For the MF, MTMF, and MTTCIMF methods, the pixel values in the rule image represent 
“MF Scores.” These values range from 0 to 1 and indicate the relative degree of match to 
the target spectrum. A value of 1 represents a perfect match. A separate rule image is 
created for each selected target (Figure 18). 

Figure 18: NEON hyperspectral image (left) and MF Score image (right) with 2% linear display stretch 
applied. The Cursor Value tool shows an MF Score of 0.84 for the pixel location indicated by the 

red crosshairs. 

For the MTMF method, an additional Infeasibility image is created for each target. The 
pixels are in noise sigma units. Higher values indicate objects that are likely false 
positives. A scatterplot can be created to compare MF scores with Infeasibility values. An 
ROI can be drawn in the scatterplot to identify pixels with low Infeasibility values and high 
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MF Scores. Figure 19 shows an example of pixels that meet these criteria and how they 
are colored red in the MF Score image. They represent better matches to the target 
spectrum. Thus, the Infeasibility image and scatterplot can be used to separate out pixels 
with high MF scores that are probably false positives. 

 

Figure 19: Scatterplot of MF Score vs. Infeasibility values. The target is galvanized metal roofing. 

For the MF, CEM, ACE, SAM, OSP, and TCIMF methods, the Target Detection workflow 
highlights target pixels in red based on a Rule Threshold value. The workflow chooses a 
default value as a starting point. A slider can be used to modify its value. If the rule value 
is larger than the threshold, the pixel is highlighted in the display (Figure 20). Pixels with a 
response larger than the threshold are accepted as target pixels. 

 

Figure 20: Setting the Rule Threshold value for the SAM rule image. Pixels with a closer match to the 
target spectra are highlighted in red. 

Another way to set a rule limit is to create an ROI threshold that highlights pixels along the 
tail of the MS Score histogram (Figure 21). 

 

Figure 21: Creating an ROI threshold that identifies the highest MF Score values. 
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In general, it is best to compare results from multiple methods to determine the best match 
between pixels and the targets of interest. Relying on one specific method does always 
provide a definitive identification of targets. For example, Figure 22 shows objects that 
were identified as galvanized metal roofing in the OSP rule image, which were not 
identified in the SAM rule image.  

Figure 22: Comparing the results of SAM (left) and OSP methods (right) to identify galvanized metal 
roofing. Objects with yellow polygons represent false positives. 

Another helpful tip is to compare the shapes of spectral curves from image and library 
spectra for a given pixel, to determine how well they match (Figure 23). 

Figure 23: Comparing the shapes of the spectral curve for image spectra (red) and library spectra 
(blue). 

Identifying targets based on their visual appearance is not recommended. Figure 24 
shows an example where several buildings appear white in a true-color image, leading to 
the assumption that they contain the same material; however, a SAM rule image reveals 
that only one of them contains galvanized metal roofing. 
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Figure 24: NEON hyperspectral true-color image (left) and SAM rule image with threshold applied 
(right). 

Filtering Targets (Optional) 
This step provides options to filter out mislabeled pixels and false positives from the 
results. The clumping and sieving operations in this step can be used to produce cleaner 
results for shapefiles and ROI results of selected targets.   

Exporting Results 
The final step in a target detection workflow is to export pixels that were identified as 
targets to a shapefile or ROI (Figure 25).  

Figure 25: Shapefile of SAM target detection results for galvanized roofing, displayed over the source 
image. 

The target detection workflow that has been discussed so far involves interactive methods 
for identifying targets, which can take considerable time. An evolving area of research is 
using machine learning algorithms for target detection in hyperspectral imagery. Machine 
learning provides a more automated solution for locating targets by training data to look 
for potential targets, based on known reference spectra. 

For example, ENVI Machine Learning provides a comprehensive set of tools to locate and 
map features of interest in multispectral and hyperspectral images. While it is not 
necessarily a “target detection” tool, it can still be used to locate spectral anomalies or to 
create classification maps of materials. The ENVI Deep Learning module is a more 
advanced set of tools that uses a convolutional neural network (CNN) to identify features 
in an image based on their spatial and spectral properties.

While target detection methods can identify materials of interest by comparing the image 
spectra to library spectra, sometimes researchers do not have specific targets in mind. 
They do not know the spectral composition of an image and are more interested in finding 
the purest materials in an image and estimating their relative abundance. The next section 
describes how this can be accomplished in ENVI. 
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EXTRACTING AND MAPPING SPECTRAL ENDMEMBERS 
In some cases, researchers want to know what spectrally unique materials exist within an 
image, without focusing on specific targets. An example is a geologist who wants to 
determine possible minerals that are present in a mining region. The process for doing this 
involves identifying unique endmembers in an image of the study area, then associating or 
mapping those endmembers to known materials using spectral libraries or other reference 
spectra. At the same time, they can estimate the relative abundance of each material 
within the image. 

Each image contains a small number of “pure” materials whose spectral properties are 
constant. These are called endmembers. Imaging spectroscopy is frequently used to 
identify and classify as many of the endmembers as possible within an image. The 
spectral hourglass workflow described next can be used to derive endmember spectra 
directly from an image to determine its composition. 

Why use image spectra in this case? Library spectra can be used to extract endmembers 
from an image, but consider that library spectra are typically collected under perfect 
illumination conditions using a laboratory spectrometer. Remote sensing image pixels 
represent less-than-ideal conditions, but their illumination conditions are relatively similar 
to each other.    

Spectral Hourglass Workflow 
ENVI provides a common “hourglass” processing workflow (Figure 26) that guides 
analysts through a process to: 

• Extract endmembers directly from imagery instead of using library spectra

• Map the distribution and fractional abundances of the materials they are associated
with

Figure 26: Spectral hourglass workflow. 

The spectral hourglass workflow has been used in many scientific applications. Qu et al. 
(2014) followed the workflow to estimate fractional vegetation abundance with EO-1 
Hyperion imagery. Robichaud et al. (2007) used it to map post-fire burn severity with 
airborne imagery. Pan, Huang, and Wang (2013) used it for spectral feature fitting 
analysis of rapeseed canopies. 

The workflow typically begins with an apparent reflectance image. See Preparing Data for 
Analysis on page 5 for guidelines on preparing the input hyperspectral image for analysis 
and creating an apparent reflectance image. 
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Figure 27: AVIRIS reflectance image of the Cuprite mining district, Nevada, USA. 

An MNF transform helps to determine the inherent dimensionality of the data by 
separating noise from the signal. See Minimum Noise Fraction (MNF) on page 10 for 
details. 

Figure 28: Color composite of the first three MNF bands of the Cuprite scene. 

The Pixel Purity Index (PPI) step identifies pixels that are spectrally pure in the scene. The 
interactive n-D Visualizer reduces those pixels to a set of endmembers that can be used 
for spectral mapping. The Spectral Analyst tool attempts to identify the materials 
corresponding to the endmembers. Finally, an appropriate mapping method is selected, 
based on the objective—whether it is mapping the spatial distribution of materials or 
mapping their relative sub-pixel abundance. 

These steps can be run individually by selecting the appropriate tool from the ENVI 
Toolbox. The sections below describe where to find the tools. However, a suggested 
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approach is to use the ENVI Spectral Hourglass Wizard. This is available in the ENVI 
Toolbox under the Spectral  Spectral Unmixing category. 

Once a set of MNF bands have been created, the next step is to extract spectral 
endmembers for analysis. 

Extracting Endmembers 
Every spectrum in the image can be reconstructed as some combination of the image 
endmember spectra. In theory, the number of endmembers that can be extracted from any 
image is equal to the number of bands, plus one. The one additional endmember 
represents the composite background, or all of the other pixels that contain mixtures of the 
endmembers (Boardman, Kruse, and Green 1995).  

The process for extracting endmembers involves two steps: using PPI to identify the 
purest pixels in the scene, and using the n-D Visualizer to reduce the PPI pixels to a set of 
endmembers that can be used for spectral mapping methods. The spectral space in which 
this occurs is multi-dimensional. The next section  describes this data space. 

Visualizing Data in More Than Two Dimensions 

A two-dimensional (2D) scatterplot helps to visualize the relationship between pixel data in 
two image bands. Figure 29 shows an example of a 2D scatterplot of two MNF bands. A 
blue color gradient is automatically applied. Brighter areas indicate the most dense 
concentration of pixels with similar values in both bands.  

Figure 29: 2D scatterplot of two MNF bands. 

A 3D scatterplot shows the relationship among three bands (Figure 30). This is where the 
concept of a data cloud becomes evident. 

Figure 30: 3D scatterplot of three bands of data. Red circles indicate examples of pure pixels. 
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With dozens or hundreds of bands of hyperspectral data, however, the complexity of the 
spectral data distribution requires a different method of visualization. With imaging 
spectroscopy, the best way to do this is in an n-dimensional Euclidean spectral space, 
where n is the number of bands in the MNF-transformed image.  

For example, if the first nine bands of an MNF-transformed image will be used to extract 
endmembers, then the spectral space will have nine different dimensions. Each of the 
nine bands is associated with one axis in spectral space, and the axes are orthogonal. 
The value of a spectrum in a single band determines its coordinates along the associated 
axis in spectral space. 

It may be helpful to visualize the n-dimensional data cloud as an irregularly shaped 
volume with properties such as shape, position, and density. The most spectrally pure 
pixels always occur in the corners of the data cloud (see Figures 30 and 34). These pixels 
form the vertices of the convex hull that surrounds all the other data. Spectrally mixed 
pixels occur inside of the data cloud. The concept of a convex hull is based on convex 
geometry, which is beyond the scope of this paper. See Boardman (1993) for details. 

Pixel Purity Index (PPI) 

The PPI step in the Spectral Hourglass Wizard attempts to separate the most spectrally 
pure pixels from those that contain a higher mixture of materials in hyperspectral images 
(Boardman, Kruse, and Green 1995). This reduces the number of pixels to analyze, and it 
makes separation and identification of endmembers easier. The PPI calculation identifies 
only the pixels that are the least mixed. 

The most common reason for wanting to find the purest pixels is that their spectra are the 
best candidates for endmember spectra, which are needed for spectral mapping 
techniques that estimate the abundance of materials in the image. 

The result of the PPI process is an image where the value of each pixel corresponds to 
the number of times it was identified as a pure pixel during a number of iterations. The PPI 
image can be used to map sites that should be visited for ground truth collection and 
further spectral measurements. 

Where to Find It 

• Included in the Spectral Hourglass Wizard 

• ENVI Toolbox  Spectral  Pixel Purity Index  Pixel Purity Index (PPI) New 
Output Band 

An MNF-transformed dataset is typically used as input to the PPI process. See Minimum 
Noise Fraction (MNF) on page 10 for details. When using the Pixel Purity Index (PPI) New 
Output Band toolbox option, select a spectral subset that contains only the coherent 
bands of the MNF dataset (Figure 31). This extra step is not required when using the 
Spectral Hourglass Wizard.   

 

Figure 31: Selecting the coherent bands of an MNF dataset as input to the PPI process. 
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The PPI calculation selects a random vector through the n-dimensional data cloud, 
passing through its mean value each time. ENVI completes multiple iterations of projecting 
the image pixels onto the random vector and marks pixels as “pure” if they fall within the 
extremes of the resulting histogram. 

As the PPI is being calculated, ENVI displays and updates a plot of the number of pixels 
that are determined as pure with each iteration. When the cumulative number of pure 
pixels begins to level off in the plot, it means that each subsequent iteration is no longer 
finding new pixels. In other words, those same pure pixels are being identified over and 
over again. Figure 32 shows an example of a PPI image and plot after the iterations are 
complete. Brighter pixels are nearer to the corners of the n-dimensional data cloud; these 
pixels are relatively more pure than pixels with lower values. 

Figure 32: Example PPI image (top) with optimized linear display stretch applied and PPI plot 
(bottom) after 30,000 iterations. 

Changing the display stretch on the PPI image will more effectively show the gradient 
between black and white pixels. Pixels with values of 0 (black) were never found to be 
extreme. A typical PPI image has a large number of pixels with values that are 0 or near 0. 

Once the purest pixels have been identified, the next step is to separate them into their 
respective endmembers. 

n-Dimensional Visualizer

The n-Dimensional Visualizer is an interactive tool for finding endmembers by locating and 
clustering the purest pixels (from the PPI step) in n-dimensional space, where n is the 
number of MNF bands. It helps visualize the shape of the data cloud that results from 
plotting image data in spectral space, using the MNF bands as plot axes.  
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Where to Find It 

• Included in the Spectral Hourglass Wizard 

• ENVI Toolbox  Spectral  n-Dimensional Visualizer  n-Dimensional Visualizer 
New Data 

• ENVI Toolbox  Spectral  n-Dimensional Visualizer  n-Dimensional Visualizer 
Auto Cluster  

A scatterplot of the data is displayed in n-dimensional space (Figure 33).  

 

Figure 33: n-D Visualizer scatterplot and controls. 

The points in the scatterplot collectively represent the data cloud. The n-D Controls dialog 
can be used to select the MNF bands to animate. The data cloud rotates along the axes of 
all of the selected dimensions (MNF bands). Spectral endmembers are located at the 
convex corners of the data cloud. Clusters of pixels at various corners of the data cloud 
can be identified and represented by distinct classes and colors. Figure 34 shows an 
example. 

 

Figure 34: Data cloud with three classes (yellow, green, magenta) that define clusters of 
endmembers. 
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Refer to the ENVI Help for details on using the n-Dimensional Visualizer and selecting 
endmembers.  

Once the endmembers have been extracted from the MNF-transformed data, they can be 
used in spectral mapping methods. 

Using the Spectral Analyst to Match Endmembers to Known Materials (Optional) 

The Spectral Analyst can help identify the materials corresponding to the selected 
endmembers, based on their spectral characteristics and comparison with a spectral 
library. This is an optional step. The Spectral Analyst is based on spectral matching 
techniques such as Binary Encoding, Spectral Feature Fitting (SFF), and Spectral Angle 
Mapper (SAM). Each has specific requirements for successful operation. Refer to the 
Spectral Analyst topic in ENVI Help for details.  

Figure 35: Spectral Analyst results from SAM, SFF, and Binary Encoding. 

Where to Find It 

• Included in the Spectral Hourglass Wizard

• ENVI Toolbox  Spectral  Spectral Analyst

Here are some general tips on using the Spectral Analyst:

• The image spectra should be consistent with the library spectra. See Ensuring
Consistency with Image Spectra on page 13 for details.

• The Spectral Analyst can only recommend likely candidates for identification. It
cannot provide a definitive answer for the actual materials associated with the
endmembers.

• The reference spectral library may not contain all the materials that are present in the
image. In this case, the Spectral Analyst will try to match the absorption features of
the endmember spectra to other materials in the spectral library, even if they do not
make sense. Ground truth and field studies may be needed to confirm the results.

Selecting Mapping Methods 
Various mapping methods are used in ENVI to project spectral endmembers from n-
dimensional space back to their locations in the imagery and to their spectral signatures. 
They can be categorized as follows: 

• Spectral similarity methods: Separate materials into spectrally similar groups via
image classification.

• Spectral matching methods: Use specific absorption features in reflectance spectra
to identify materials.

• Unmixing methods: Estimate the sub-pixel abundances of materials in an image
using spectral unmixing techniques.
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Spectral Similarity 

Spectral Angle Mapper (SAM) is the exclusive spectral similarity measure used in ENVI. It 
is a whole-pixel technique that is primarily used for target detection; however, it can also 
be used to create spectral classification maps (Kruse et al. 1993). The input image must 
be converted to apparent reflectance so that the data units are the same as the library 
units. 

SAM uses an n-dimensional angle (in radians) to match pixels to reference spectra. 
Smaller angles represent closer matches to the reference spectrum. Pixels farther away 
than the specified maximum angle threshold are not classified. 

The endmember spectra used by SAM can come from spectral libraries or directly from an 
image using ROIs that were exported from the n-D Visualizer. 

Where to Find It 

• Included in the Spectral Hourglass Wizard

• ENVI Toolbox  Classification  Supervised Classification  Spectral Angle
Mapper Classification

The result of SAM classification is a set of rule images, one for each selected material. 
Darker pixels in the rule image represent smaller spectral angles and thus image spectra 
that are more similar to the reference spectra. A classification image is also created that 
assigns each pixel to a class that represents one of the materials from the selected library 
spectrum. The classification chooses the library spectrum that has the smallest spectral 
angle with each pixel in the input image. Thus, the classification image shows the best 
match to a given material for each pixel. Figure 36 shows an example. 

Figure 36: SAM rule image for the mineral kaolinite in AVIRIS imagery, overlaid with the kaolinite 
class (colored pink). 

Spectral Matching 

Whole-pixel spectral matching methods such as Spectral Feature Fitting (SFF) and Multi-
Range SFF compare specific absorption features from the reflectance spectra of image 
pixels to those of a known reference spectrum. The basic premise is that pixels whose 
absorption features match well in width and depth are likely to have a higher abundance of 
the material of interest, although this requires some caution. 

SFF works best with materials that have unique and detailed absorption features such as 
minerals and some man-made features. In contrast, it does not work well with general 
categories of materials such as vegetation and water. With some minerals such as 
hematite, the width and depth of absorption features are affected by crystallinity (Figure 
37). So it is important to use the most distinct reference spectrum as possible or include 
reference spectra that have varying crystallinities.  
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Figure 37: Plot showing the apparent wavelength centers for absorption features in the mineral 
hematite. 

SFF involves the removal of a continuum from the image and reference spectra. This 
normalizes each spectrum in the input image by comparing it to a continuum curve, thus 
defining a common baseline from which to measure absorption feature depth and position. 
A continuum curve is a mathematical function formed by fitting a convex hull to the 
spectrum (Figure 38). The resulting reflectance curve (with continuum removed) gives a 
better picture of band centers and depths. 

 

Figure 38: Reflectance curve fitted with a continuum curve (left) and reflectance curve after removing 
the continuum (right). 

Where to Find It 

• Included as an option in the Spectral Hourglass Wizard 

• ENVI Toolbox  Spectral  Mapping Methods  Continuum Removal 

• ENVI Spectral Profile plots  Y-axis options  Continuum Removed 

• ENVI Toolbox  Spectral  Mapping Methods  Spectral Feature Fitting 

• ENVI Toolbox  Spectral  Mapping Methods  MultiRange Spectral Feature 
Fitting (multiple tools) 

The result of SFF is a set of two images for each endmember contained in the spectral 
library (Figure 38). The first is a Scale image that indicates pixels whose absorption 
features are similar in depth and width to those of the selected library spectrum. The pixel 
values indicate the probability (ranging from 0 to 1) that a particular material occurs in that 
pixel. A value of 1 indicates a perfect match (Kruse 1994). The second image that is 
created is an RMS error image where dark areas indicate low RMS errors. Comparing the 
two images can help locate pixels that have a good spectral fit for the selected material 
absorption feature. 



Non-Export Controlled Information 33 Hyperspectral Analytics in ENVI 

Figure 39: Spectral feature fitting results for the mineral alunite in AVIRIS imagery: Scale image (left) 
and RMS Error image (right). 

For more information, refer to the Hyperspectral Analysis: SAM and SFF Tutorial. 

Unmixing Methods 

The spectrum from a pixel is a measurement of reflectance coming from all materials 
within that pixel. If the area within the pixel contains only one material (as with a large 
body of water or a large roof), that pixel’s spectrum represents a single material. (Figure 
40, rooftop). However, if the area within the pixel contains more than one material, then it 
is a mixed pixel (Figure 40, grass + bare soil). Any material in the mixed pixel is at a sub-
pixel quantity (HGS 2014). 

Figure 40: Spectra of a pure pixel (rooftop) and mixed pixel (grass and bare soil). 

The reflectance spectrum of a mixed pixel is assumed to be a linear combination of the 
spectra of each material. In a linear mixture model, a reflectance spectrum from a single 
pixel is a weighted average of reflectance spectra from each material in the pixel. Figure 
41 shows a diagram of a mixed pixel consisting of three materials and how the spectrum 
for that pixel is measured. 

Figure 41: Mixed pixel consisting of three materials. 

When mixing occurs, it is not possible to determine what materials are present in the pixel 
by just measuring the spectrum of that pixel. Spectral unmixing is used to decompose the 
measured spectrum of a mixed pixel into its constituent spectra (endmembers) as well as 
the fractional abundances that indicate the proportion of each endmember in the pixel 
(Sidike et al. 2012). The fractional abundances should be non-negative. For example, in 
Figure 41: 

• The fractional abundance of material A is 25%.

• The fractional abundance of material B is 25%.

• The fractional abundance of material C is 50%.
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The most basic form of unmixing—referred to as linear unmixing—assumes that the 
apparent reflectance of each pixel in an image is a linear combination of the apparent 
reflectance of each material present in the pixel. 

Sidike et al. (2012) discuss the concepts of spectral unmixing in more detail, along with 
comparisons of the various methods used. 

The Spectral Hourglass Wizard provides an option for Linear Spectral Unmixing. This is a 
complete linear unmixing method that requires all of the endmembers to be identified in a 
scene. However, the high dimensionality of hyperspectral data and the complexity of the 
spectral endmembers means that a complete linear unmixing is not always possible or 
even desired (Boardman, Kruse, and Green 1995). A complete linear unmixing model only 
produces valid results if all of the image endmembers have been correctly identified. 
Additionally, many materials (such as minerals) do not mix linearly in the real world. 

Where to Find It 

• Included in the Spectral Hourglass Wizard

• ENVI Toolbox  Spectral  Spectral Unmixing  Linear Spectral Unmixing

The result of Linear Spectral Unmixing is a set of abundance images and one RMS error 
image. Each abundance image corresponds to an individual endmember. The pixel values 
in the abundance images indicate the percentage of the pixel consisting of that 
endmember. The RMS error image uses the results of the abundance image to determine 
the overall error of all of the endmember abundance values for each pixel. RMS error 
images should appear as noise. 

Linear Spectral Unmixing was one of the earliest spectral tools added to ENVI to address 
the issue of mixed pixels in coarse-resolution imagery such as AVIRIS. A better option for 
assessing the sub-pixel abundance of materials is the Mixture-Tuned Matched Filtering 
(MTMF) target detection method.  

Matched Filtering Methods 

Matched Filtering (MF) and MTMF do not require accurate information about all of the 
endmembers in the scene. They provide abundance estimates of individual endmembers 
without relying on information from the other endmembers. Pixel values in the resulting 
rule images are directly proportional to the fractional abundance of the target materials. 
See Selecting Target Detection Methods on page 17. 

Figure 42 shows examples of MTMF abundance images for six endmembers derived from 
an AVIRIS image of the Cuprite mining district in Nevada, USA. The endmembers 
correspond to unique classes identified in the n-D Visualizer. The parentheses indicate the 
presumed mineral type associated with each endmember, based on the results of the 
Spectral Analyst and from previous studies of the region (Swayze et al. 2014). 

Figure 42: MTMF abundance images for six endmembers. 
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A red/green/blue (RGB) color composite of three MTMF abundance images can help to 
visualize multiple materials at once. Figure 43 shows an example where one endmember 
(presumably calcite) is colored red; another endmember (presumably kaolinite) is colored 
green, and another endmember (presumably alunite) is colored blue. Again, the 
abundance images—as well as the Spectral Analyst scores—cannot provide a definitive 
answer about the types of materials associated with the endmembers. Further verification 
may be needed. 

Figure 43: RGB color composite of MTMF abundance images. 

SUMMARY 
The workflows described in this paper reveal the true power of imaging spectroscopy. 
Multispectral remote sensing can be used to determine if a given material is present in an 
image and where it is located. Imaging spectroscopy can provide even further insight by 
estimating how much of the material exists within each pixel. Data from imaging 
spectrometers are oversampled by nature, which means that they have more spectral 
channels than inherent data dimensions. This oversampling allows researchers to see 
inside of pixels to estimate the relative abundance of materials that comprise them. 

Imaging spectroscopy requires a unique set of tools and methods, compared to traditional 
multispectral remote sensing. It is important to know the properties and capabilities of the 
sensor that acquired the imagery and whether or not its spectral resolution and range will 
sufficiently identify materials of interest. Requirements for preprocessing vary by 
application; atmospheric correction and dimensionality reduction techniques such as MNF 
may or may not be needed depending on the intended result. A particularly important step 
is preparing image and reference spectra so that they can be directly compared. The 
success of target detection and spectral mapping methods depends on the quality of the 
input and reference spectra. 

The wide variety of hyperspectral tools that ENVI provides, along with the suggested 
workflows in this paper, can facilitate the analysis of high-fidelity spectral data. 

Future papers will address imaging spectroscopy in vegetation studies as well as 
incorporating machine learning algorithms to analyze hyperspectral data. 
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