

Hyperspectral on the Space Station: Lessons Learned and Goals Achieved

Amanda O'Connor

Director of Geospatial Solutions, Teledyne Brown Engineering

Amanda.oconnor@Teledyne.com

A long time ago in a galaxy far far away.....

DLR Earth Sensing Imaging Spectrometer

Characteristic	DESIS-30 Features
Ground Sampling Distance	30 m @ 400 km altitude
Ground Swath	30 km @ 400 km altitude
Spectral Range	400 nm – 1000 nm
Spectral Bins	Measured: 235 @ 2.55 nm Programmable binning on-orbit
Quantization	12 bits + 1 gain bit
Signal to Noise Ratio @ 550 nm	205:1 sampled at 2.55 nm 406:1 binned to 10.2 nm
On-board calibration	Dark Field for DSNU LED Array for PRNU
Independent Pointing	Pointing Unit ±15° Along Track
Independent Time and Location	On-board GPS

• Academic and Non-profits can access data freely via a provision from the DLR

Extensive cross calibration with existing space and aerial assets

Multi-User System for Earth Sensing (MUSES)

- DESIS is installed on MUSES (Where Teledyne Comes in)
- Inertially stabilized
- Precise pointing and Earth surface target tracking
- Up to 4 robotically installed instruments
- Total data downlink ~225 GB/day
- Onboard processing option
- Instruments launched in "soft stowage", ISS National Lab covers transport cost, Teledyne manages integration, testing etc.
- 15-20 months from agreement to installation
- Currently exploring SWIR, High res MSI and others to complement DESIS data

MUSES/DESIS Location on the ISS Express Logistics Carrier 4 (ELC-4)

Earth Observation From the ISS – Why It Works/Challenges

Benefits

- Coverage of ~90% of populated Earth
- Coverage of 100% of tropics and equatorial regions more frequently than other sensors
- Upgrade, repair and exchange of instruments as technology and/or markets evolve
- Traditional barriers to entry minimized

Challenges

- Maneuvers, resupplies, spacecraft location can cause missed collects (field coordination)
- >50 degrees N/S not covered in orbit

How DESIS and Spectral Processing Can Make a Difference in Ocean Studies

- The Great Pacific Garbage Patch (GPGP) orbits on average around 32°N and 145°W, though ocean currents are dynamic and subject to seasonal shifts
- The GPGP is estimated to be over 80,000 tons of plastic and other debris
- Not only here, but all throughout the world's oceans and coastlines
- Significant wildlife and human health impact

Imaging Remote Areas

- DESIS high frequency coverage of the tropics allowed the collection of relatively clear data in a notorious cloudy area
- This region is so remote aerial hyperspectral assets, drones aren't possible except from marine vessels
- Spectral signatures can determine types and concentrations of garbage/debris and provide logistical support for clean up efforts
- And determine the areas that can best benefit from clean up and provide marine vessel avoidance guidance

DESIS Mosaic from 7/9/19

How ENVI Enabled Rapid Discovery

- Prepared DESIS imagery
- Seamless Mosaic
- RXD Anomaly to search a large area
- Spectral Profiles
- Create new spectral signature library and ROIs
- SAM to separate anomalies from real plastics

In the Future

- Automate process for other searches
- On-Board processing to downlink locations

Plastic Spectra in a Lab Setting

- Not exposed to
 - Saltwater
 - Sun
 - Agitation
 - Decomposition

An airborne remote sensing case study of synthetic hydrocarbon detection using short wave infrared absorption features identified from marine-harvested macro- and microplastics

Shungudzemwoyo P. Garaba^{a,*}, Heidi M. Dierssen^{a,b}

^a Department of Marine Sciences, Avery Point Campus, University of Connecticut, 1080 Shennecossett Road, Groton, CT 06340, USA

b Institute of Material Science, Storrs Campus, University of Connecticut, 97 North Eagleville Road, Storrs, CT 06269-3136, USA

Mapping of Plastics vs Clouds

Oil Slicks and Seeps

DESIS CIR Band Information

Spectral Properties to Map Oil Extents

Summary

- New Hyperspectral data and modalities are becoming available with high frequency
- The ISS and Teledyne MUSES platform provide fast access to space
- DESIS is an operational, well calibrated hyperspectral instrument enabling us to ask questions we couldn't previously with HSI data
- Together with applications like ENVI for discovery and enterprise deployment, rapid progress against environmental catastrophes is possible

Questions?

WHAT THE NUMBER OF DIGITS IN YOUR COORDINATES MEANS	
LAT/LON PRECISION	MEANING
28°N, 80°W	YOU'RE PROBABLY DOING SOMETHING SPACE-RELATED
28.5°N, 80.6°W	YOU'RE POINTING OUT A SPECIFIC CITY
28.52°N, 80.68°W	YOU'RE POINTING OUT A NEIGHBORHOOD
28.523°N, 80.683°W	YOU'RE POINTING OUT A SPECIFIC SUBURBAN CUL-DE-SAC
28.5234°N, 80.6830°W	YOU'RE POINTING TO A PARTICULAR CORNER OF A HOUSE
28.52345°N, 80.68309°W	YOU'RE POINTING TO A SPECIFIC PERSON IN A ROOM, BUT SINCE YOU DIDN'T INCLUDE DATUM INFORMATION, WE CAN'T TELL WHO
28.5234571°N, 80.6830941°W	YOU'RE POINTING TO WALDO ON A PAGE
28.523457182°N 80.683094159°W	"HEY, CHECK OUT THIS SPECIFIC SAND GRAIN!"
28.523457182818284°N, 80.6830 9 4159265358°W	EITHER YOU'RE HANDING OUT RAW FLOATING POINT VARIABLES, OR YOU'VE BUILT A DATABASE TO TRACK INDIVIDUAL ATOMS. IN EITHER CASE, PLEASE STOP.
	xkcd

