SAR SYMPOSIUM

Machine Learning techniques using multi-sensor data for groundwater potential estimation

Dr. Elisa Destro

sarmap SA

edestro@sarmap.ch

Outline

Objective

Groundwater Potential maps: Machine learning application

- Study area
- Explanatory variables : a focus on Remote Sensing Products
- Borehole database
- Performance evaluation
- Groundwater Potential maps
- □ Main findings
- □ Conclusion

ANALYI

Objectives ResEau PROJECT - Chad

- □ To improve the country's **resilience** to the effects of **climate change**
- □ To support the water resources management for planning the exploitation of the aquifers

WHAT'S THE GAP?

- Limited knowledge of **groundwater** and **surface resources**
- □ High borehole failure rates

HOW TO SOLVE IT?

Groundwater potential mapping (GPM) and reliable predictions using Machine Learning (ML) techniques

Groundwater Potential Mapping (GPM) - 1/2 WHAT'S THE RESULT?

GPM as the **likelihood** of borehole success (finding water)

Groundwater Potential Mapping (GPM) - 2/2

Traditional GPM:

based on expert judgement techniques

WHY MACHINE LEARNING?

Machine Learning GPM:
To find complex associations between explanatory variables

□ To use several **satellite - products** (first attempt)

To show how seasonal fluctuations derived from satellite-based products can enhance map outcomes

Collaboration with University of Madrid

Study area

DANALYTICS

Area = 12000 km ²	Water points	Elevation [m a.s.l.]
Geological setting: Crystalline rocks and unconsolidated sediments	• Water	850
Seasonal river network	No Water	400

Satellite imagery Multiple sensors and multitemporal analysis

Fieldwork: hydrogeological/geological data collection

Generation of GPM

Explanatory variables : a focus on Remote Sensing Products

Martinez-Santos (2019) collected the **most frequent** explanatory variables in literature for GPM

Presence or absence of groundwater can be **inferred from surface features**

Seasonal and static products

This study adds **several satellite-products**

Name/shorthand	Description	Source	
COH Dry min	Minimum value of coherence dry season		
COH Wet min	Minimum value of coherence wet season		
Min COH difference	Difference between COH Dry min and COH Wet min	Sentinel-1	
VV Dry mean	Mean value of VV intensity dry season		_
VV Wet mean	Mean value of VV intensity wet season		tion
Mean VV difference	Difference between VV Dry mean and VV Wet mean		aria
NDVI Dry	NDVI at end of the dry season		al v
NDVI Wet	NDVI at end of the wet season	Sentinel-2	son
NDVI max	Maximum value of NDVI wet season		Sea
Land cover dry	Land cover (end of the dry season)	Sentinel-1/-2	
Land cover wet	Land cover (end of the wet season)	Landsat-8	
Precipitation	Cumulated Precipitation wet season 2017 and 2018		
Evapotranspiration	Cumulated Evapotranspiration wet season 2017 and 2018	MSG	
Lithology	Geological domains per rock type	Landsat-8	

Name/shorthand	Description	Source	
Drainage density	Length of channels per unit area		
Distance permanent channels	Distance to channels classified as permanent due to permanent seasonal regime		
1000 Fault	Fault density with a 1000 m radius		5
2000 Fault	Fault density with a 2000 m radius		of
Fracture density 100 m	Fracture density with a 100 m radius		ijt o
Fracture density 250 m	Fracture density with a 250 m radius		ont d ir
Fracture density 50 m	Fracture density with a 50 m radius		an c
Distance ephemeral channels	Distance to channels classified as ephemeral due to their seasonal regime	AW3D-WorldDEM	phi off
Geomorphology	Landform		gra run
Stream Power Index	Describe potential flow erosion at the given point of the topographic surface		ce
Elevation	Topographic elevation		ILTO
Aspect	Direction of the slope		ns
Slope	Slope		
Topographic wetness index	Steady state wetness index. Quantifies topographic control on surface hydrology.		
			·

Saturated thickness	Difference between hydraulic heads and basement depth		Ē	۵	
lydraulic head	Interpolated hydraulic heads from field measurements (January-February 2020)	Field data	nbsd	lfo 3	1-1-1-
Basement Depth	Interpolation of the geophysics and borehole data	Field data	้ง	l	17

Seasonal variation: Coherence

Wet season

0

ANALYTICS

Dry season

Minimum Coherence value

Seasonal variation: Intensity

Wet season

0

ANALYTICS

Dry season

Seasonal variation: NDVI

Wet season

-1

DANALYTI NSYMPOSIU Dry season

Borehole database

enough water to supply a manual hand pump on a permanent basis

Negative

failed to find groundwater drilling (additional points on outcrops)

*SciKit-Learn 0.24.1 toolbox

Performance evaluation

NO strong direct **correlations** among explanatory variables (collinearity >0.60) were observed (Dormann et al. 2013)

METRICS

□ AUC score= 0.87-0.90 Test score= 0.84 □ Balanced score= 0.83-0.84

The algorithms are able to distinguish POSITIVE and NEGATIVE classes

HOW MANY VARIABLE AND WHICH VARIABLES ARE IMPORTANT?

11 explanatory variables were found to be important in all cases

Aspect

- □ Fracture Density 250 m Hydraulic Heads Basement Depth
- Coherence Dry □ Lithology
- **NDVI Dry** Evapotranspiration

- □ Slope
 - **D** Topographic Wetness Index
 - □ Intensity VV Dry

Highest probability to predict the groundwater occurrence

Groundwater Potential maps

Agreement map (Groundwater potential)

_		_	

both algorithms agreed on a negative groundwater potential (0).

DANALYTICS

disagreement between RFC and ETC outcomes

Main findings: Seasonal variables

In the DRY season:

- □ products are particularly **significant**
- □ vigorous vegetation may reflect the
 - permanent surface water
 - irrigation
 - shallow water table

In the WET season:

- □ Higher infiltration occurs for areas with
 - Higher Topographic Wetness Index values

POSITIVE GWP

• Lower slope values

Main findings: Hydrogeological context

Groundwater Potential maps

- High Potential Valleys carved out by **ephemeral streams** (porous conditions)
 - Wadis and piedmonts as the most productive areas
 - □ High basement depth (crystalline material): **thick weathered zone**
 - Abéché: combination of the wadis and a thicker zone of weathered crystalline basement rocks

Low Potential

ANALYT

basement outcrops in the east the **biseau sec** in the west

- Extensive fieldwork is required
- Low number of wells with flow rate
- Negative borehole have numerous reason

- Machine Learning: big data method
- LIMITATIONS Comparison with expert-based knowledge is missing

Conclusion

- Groundwater is a **crucial resource** in arid regions
- Groundwater potential mapping is an excellent tool for **large-scale groundwater exploration**
- □ Satellite-based products allow to analyze large and remote unsurveyed areas
- □ Seasonal satellite-based products allow to improve static information
- □ Valleys, piedmonts and thick weathered zone are the most productive

Reference

Geocarto International

ISSN: (Print) (Online) Journal homepage: <u>https://www.tandfonline.com/loi/tgei20</u>

Delineation of groundwater potential zones by means of ensemble tree supervised classification methods in the Eastern Lake Chad basin

Taylor & Francis

Dr. Elisa Destro

edestro@sarmap.ch

Gómez-Escalonilla Víctor, Vogt Marie-Louise, Destro Elisa, Isseini Moussa, Origgi Giaime, Djoret Daira, Martínez-Santos Pedro & Holecz Francesco

To cite this article: Gómez-Escalonilla Víctor, Vogt Marie-Louise, Destro Elisa, Isseini Moussa, Origgi Giaime, Djoret Daira, Martínez-Santos Pedro & Holecz Francesco (2021): Delineation of groundwater potential zones by means of ensemble tree supervised classification methods in the Eastern Lake Chad basin, Geocarto International, DOI: <u>10.1080/10106049.2021.2007298</u>

To link to this article: <u>https://doi.org/10.1080/10106049.2021.2007298</u>

ANALYTICS SYMPOSIUM

