SARSYMPOSIUM

Multi-temporal/multi-frequency satellite SAR data P-SBAS analysis of natural and built-up environments

Gianni Onorato

IREA – CNR (Italy)

onorato.g@irea.cnr.it

Amatrice earthquake (24/08/2016): DInSAR deformation analysis example

<-20 LOS Deformation [cm]

RANALYTI SYMPOSIU

DInSAR analysis: estimation of the Up-Down and Est-West component

It is worth noting that the North-South (N–S) component is not detectable with a significant accuracy, due to the near polar orbit trajectories of the exploited radar satellites.

Past and present SAR satellites

des los

Berardino et al., 2002, IEEE Trans. Geosci. Remote Sens. Pepe et al., 2005, IEEE Trans. Geosci. Remote Sens.

SBAS-DInSAR result accuracy

SBAS vs. Leveling: Napoli Bay

SAR SYMPOSIUM

Parallel SBAS (P-SBAS) workflow

DUAL LEVEL PARALLELISM FOR MULTI-NODE AND MULTI-CORE ARCHITECTURES

Casu et al., 2014, IEEE JSTARS Zinno et al., 2015, IEEE JSTARS Zinno et al., 2015, IEEE Transaction Cloud Computing

P-SBAS Cloud solution: Amazon Web Services (AWS)

Zinno et al., in *IEEE* Transaction on Cloud Computing 2015 Zinno et al., in *IEEE* JSTARS 2015 Zinno et al., in *IEEE* JSTARS 2016

el Arrest

Sentinel-1 characteristics

Sentinel-1 Parallel SBAS (P-SBAS) workflow

The parallelization strategy is based on Multi-Node and Multi-Core architectures

The granularity is essentially based on two level:

- Burst Level
- Interferograms Level

The PhU step uses a dedicated parallelization strategy (Open MP)

Casu et al., 2014, IEEE JSTARS Zinno et al., 2015, IEEE JSTARS Zinno et al., 2015, IEEE Trans. Cloud Computing Manunta et al., 2019, IEEE TGRS

DInSAR monitoring of volcanic areas

SAR ANALYTICS

P-SBAS Monitoring of Campi Flegrei via Sentinel-1

25/03/2015 - 22/01/2021

Up Displacement

East-West Displacement

Long term monitoring

DInSAR analysis at national scale – yearly updates

>2

Mean deformation velocity

LOS [cm/year]

<-2

RANALYTICS SYMPOSIUM

Long term monitoring

SAR SYMPOSIUM

P-SBAS based medium resolution DInSAR analysis at continental scale

Casu et al., 2014, IEEE JSTARS Manunta et al., 2019, IEEE TGRS Lanari et al., 2020, Rem. Sensing

SBAS-DInSAR analysis at two different spatial scales

The Full Resolution (FR) SBAS-DInSAR technique: main applications

COSMO-SkyMed constellation (CSK)

- Spatial resolution (Stripmap/Spotlight): **3 m / < 1m**
- Ground coverage (Stripmap): 40 x 40 km
- Ground coverage (Spotlight): 10 x 10 km
- X-band
- Quad-Pol: HH, VV, HV, VH
- 2007 present

Full resolution CSK SBAS-DInSAR analysis: the Napoli case study

SAR ANALYTICS SYMPOSIUM

FR SBAS-DInSAR analysis of the built-up environment: the Napoli case study

193 CSK images by ascending orbit (2009-2019)

FR SBAS-DInSAR analysis of the built-up environment: the Napoli case study

FR P-SBAS DInSAR analysis: CSK+CSG case study over Rome (Italy)

idenza del Consiglio dei Minis

FR P-SBAS DInSAR analysis: CSK+CSG case study over Rome (Italy)

LINSYMPOSI

sidenza del Consiglio dei Ministr

How to manage such a Big Data challenge?

L-Band SAOCOM Satellite

SAOCOM: Satélite Argentino de Observación COn Microondas

- Spatial Resolution: **5m**
- L-Band
- Swath width: **~60km**
- Italy as an exclusivity region

L-band is less sensitive but presents less criticisms, suitable for the analisys of infrastructures

L-Band SAOCOM Satellite examples

SAOCOM 11 B 0

L-Band SAOCOM Satellite examples

azimuth

Frequency impact on fringe pattern

SAR SYMPOSIUM

Multi-frequency and multi-platform data integration

Next to come

- Operational **airborn** SAR platform
- **Systematic** DInSAR Mapping/Monitoring at **national scale**:
 - Update rate: 12 6 3 1 months
 - Higher spatial resolution
- CSK/CSG (COSMO Second Generation) **on-demand** at **high resolution**
- New sensors: SAOCOM, NiSAR (2023), Rose-L (2028)
- Mirror Copernicus, New constellation PNRR

Thanks for the attention

A.J.

A.J.

A.J.