IDL
Image Processing

© 2018 Harris Geospatial Solutions, Inc.

This information is not subject to the controls of the International Traffic in Arms Regulations (ITAR) or the Export
Administration Regulations (EAR). However, this information may be restricted from transfer to various embargoed countries
under U.S. laws and regulations.

ﬁ I D L IDL Image Processing

Legal and Copyright Notices

The IDL® and ENVI® software programs and the accompanying procedures, functions, and
documentation described herein are sold under license agreements. Their use, duplication, and
disclosure are subject to the restrictions stated in the license agreement. Harris Geospatial Solutions,
Inc. reserves the right to make changes to this document at any time and without notice.

Limitation of Warranty

Harris Geospatial Solutions makes no warranties, either express or implied, as to any matter not
expressly set forth in the license agreement, including without limitation the condition of the software,
merchantability, or fitness for any particular purpose. Harris Geospatial Solutions shall not be liable for
any direct, consequential, or any other damages, suffered by the licensed user or any other users
resulting from the use of the software packages or the software documentation.

Permission to Reproduce Manuals

If you are a licensed user of Harris Geospatial Solutions software, Harris Geospatial Solutions grants you
a limited, nontransferable license to reproduce its software’s manuals provided such copies are for your
use only and are not sold or distributed to third parties. All such copies must contain the title page and
Harris Geospatial Solutions copyright notice.

Export Control Information

Harris Geospatial Solutions Software and its associated technology are subject to U.S. export controls
including the United States Export Administration Regulations. The licensed user is responsible for
ensuring compliance with all applicable U.S. export control laws and regulations. These laws include
restrictions on destinations, end users and end use.

Copyright and Trademark Notices

IDL® and ENVI® are registered trademarks of Harris Corporation.
Esri®, ArcGIS®, ArcView®, and ArcInfo® are registered trademarks of Esri.

Adobe Illustrator® and Adobe PDF® Print Engine are either registered trademarks or trademarks of
Adobe Systems Incorporated in the United States and/or other countries.

Macintosh® is a registered trademark of Apple Inc., registered in the U.S. and other countries.

PowerPoint®, PowerPoint icon and Windows® are registered trademarks of Microsoft Corporation in
the United States and/or other countries.

UNIX® is a registered trademark of The Open Group.

FLAASH® and QUAC® are registered trademarks of Spectral Sciences, Inc.

Other trademarks and registered trademarks are the property of the respective trademark holders.
© 2018 Harris Geospatial Solutions, Inc.

2 © 2018 Harris Geospatial Solutions, Inc. All Rights Reserved. This information is not subject to
the controls of ITAR or EAR. Use or disclosure of this information is subject to the restrictions on
the Title Page of this document.

Contents

Chapter 1
Introduction to Image Processing in IDLccooooiiiiiiiiiiiiiiiiiiice e 9
Overview of IMage PrOCESSINGciieeieeiieeiirsieeseesieesteeseeesteesteseestessessesssesssesseessesssenns 10
Digital Images and IMage ProCESSINGcceecuerreeiierirersereieseeseesieesessessesseessesssenns 10
Understanding Image DefinitionSiN IDLccoocvie it 12
Representing Image Datain IDLcccviciiiiiie et se e 13
ACCESSING IMAGES ...eeeveeieiterieeesie sttt et ete et e et s e e te s e st e seeseesseensenseseesnenneensenseas 15
QUENYING TMAJESveceiirieiiee e iee sttt e ee e e e et steete e tesate e besseesneeeseesneesneesneesnanns 15
[L= £ 01 S 16
Chapter 2
Transforming Image GEOMEeLrYcoooviiiiiiiiiiiiiie e 17
Overview of Geometric TransformMationsccooerirerierenene e e 18
(O 70T o] o1 a0 1 1 1F=T0 == SURPRRN 20
[0 (01 1o T 1 0 7="0 < 23
RESIZING IMBOES ...eeveeiieiiecie ettt st ae s re e st e be e s reesreesneesaeenseesreens 26

Image Processing in IDL 3

ShIftING IMBYESvecvieeieieee ettt e st e s be et ensesresaeesaetesaesreas 28
REVEISING IMAOES ...ttt r e et n e nr e 30
TranSPOSING IMAGES ...eveeiieerieeiiieieesieeie et eeeete e seesteetesreessaesseesseesbeesseesreesseesseeseessennseens 32
ROLALING IMBJESccveeiieeeiieie st r e n e nrenr e 34
Rotating an Image by 90 Degree INCremMENtSccccvevveveeceesiesie e e 34
Using the ROT Function for Arbitrary ROEHIONScccooverereeeneneneseeeree e 36
Planar Slicing of VOIUMELINC Daac.ccceieiiiiiinsie et 38
Displaying aSeries of Planar SHCESccovieeeieriereseecesese s 38
Extracting a Slice of VOIUMELFC Datacccccevvevieeieeieesee e et 40
Interactive Planar Slicing of VOIUMELIC Datacccooveveeerenieieeeneneseeeeesesieseeens 42
Displaying Volumetric DataUsing SLICERSccccovoevieiviene e 43
Manipulating Volumetric Data Using SLICERScccoviiiineinineneeere e 43
Chapter 3
Mapping an Image onto GEOMELIYcccoveeeeeeiiiieeeeeeeecr e 47
Mapping Images onto SUMfaCeS OVEIVIEWcccccceieeiene et 48
Mapping an Image onto Elevation Daaccoeoeeererenenneseseeeeeesresese e 50
Opening Image and GEOMELIY FIlEScceveiiiiiiiin e 50
Initializing the IDL Display ODJECEScccviirreieeerenieriereeesee e 52
Displaying the Image and Geometric Surface ObJeCtSccovvvveveececreere e, 53
Mapping an Image onto @ SPNETE ..o 57
Mapping an Image onto a Sphere Using Direct Graphicsccccccveeiveveevecceevnnnee, 57
Chapter 4
Working with Masks and Image StatisStiCSccccvvvvvvevviiviiiiciiine e, 61
Overview of Masks and Image SEatiStiCSccecvveiiciiriere e 62
MESKING TMBOEScovereieeeiietesiee et r et r e n e r e en e e 64
(O T o] o1 a0 1 =0 - 69
Locating Pixel Vauesinan IMagEccccvriiireeeene et 73
Calculating IMage SLALISHICSvevvierieciecieeree e ere s sre e sre e sne e reesreesre e e 77
Chapter 5
WarpiNg IMAJES ..o 81
Overview of Warping IMBOEScceceeeeererreeenene e eeereesee e eseeseeseeeeeseeseessesseensesseseens 82
Tipsfor Selecting Control POINEScccccvieeeeiiieie e 83
Creating Transparent Image OVENAYScocoeieiereiirereeee e 84
Displaying Image Transparencies Using Direct GraphiCsccoeveveereeneeneennnnne 84

Contents Image Processing in IDL

Displaying Image Transparencies Using Object GraphicCscccccevvvveveeieereesrennne 84
Warping Images Using DireCt GraphiCsccccoveirereneeerenesieneesesie s 85
Chapter 6
Working with Regions of Interest (ROIS)ccevveeiiiiiieeiiieeeeeeeeeiiiiiins 95
Overview of Working With ROIScciiiiiiicce e 96

Contrasting an ROI’s Geometric Areaand Mask Ar€accccveverereeeeenesennenens 97
Defining REgIONS OF INEEIESEcveevieieiie ittt nreens 99
Displaying ROI Objectsin aDirect GraphicS Windowccoceverereeienieneneneeneennens 101
Programmatically Defining ROISccccoiiiiiiiiecee e e et 105
GrowWiNg @REJIONocuiiiiiiiiiiriii ettt er e et n e e s nne e 109
Creating and Displaying an ROI Maskccccceviiiriciinin e 114
Testing an ROI for Point CONtAINMENTooveiriririeirese e 118
Creating a Surface Mesh of an ROI GIrOUPcocvevieerieeie et sie et 121
Chapter 7
Transforming Between DOMaiNSccovvvvvviiiiiiiiieee e eeeeeeeeeeeveenn 125
Overview of Transforming Between Image DOMaINSccevveeveresieeieeiesese e 126
Transforming Between Domains With FFToooioiiiiiieee e 128

Transforming to the Frequency DOMEINccceeveirieenienneesee et s 128

Displaying Imagesin the Frequency DOMAaINccccooereerineneeneeieneseseeese e 133

Transforming from the Frequency DOmMainccccoccevervicveeseece e 136

Removing NOiSE With the FFTooiieeie e 139
Transforming Between Domains with Waveletscccoevievvi e 144

Transforming to the Time-Frequency DOMAaINccceoeerenenneseseseeeseseseeeas 145

Displaying Images in the Time-Frequency DOMaiNcccccvevvevvicieereesieesieesee e 148

Transforming from the Time-Frequency DOMaiNc.ccoeeeieeieninerneseneeeeenens 151

Removing Noise with the Wavelet Transformcccoccvvcevv i, 154
Transforming to and from the Hough and Radon DOmainscccceerenneneneneeenes 157

Transforming to the Hough and Radon Domains (Projecting)ccccceveeevverieeneene 158

Transforming from the Hough and Radon Domains (Backprojecting) 161

Finding Straight Lines with the Hough Transformcccccevveiivicicve e, 164

Color Density Contrasting with the Radon Transformccccocvveeeveccenvccnceenenn, 170
Chapter 8
Contrasting and Filteringcccccccveiiiiiiiiiie e 177
Overview of Contrasting and FIIteriNgccccocevereieirineseesese e 178

Image Processing in IDL Contents

Y7 (s = T S 181
Working With HiSIOQIamS ..o 184
Equalizing With HIiSIOQramSccocieviiiiiesieeesiee e 185
Adaptive Equalizing With HiStOgramsccccceererereieneneseeseseseesee e 188
LN T aTo = N 7= o = 193
LOW PaSS FIITENNG ...t 194
[[T = Sy =1 o 197
DireCtional FiltEIiNGccooereeeieeseseerese e 201
(= 1o o= B T 1 o 204
SMOOLNING 8N TMBGEeeeviiieeeeeeeee et r e 209
Smoothing With AVErage VaUEScccceveeiieseecece ettt st 209
Smoothing With Median ValUESccoviiiiiirieieeeeree s 213
Sharpening an IMBOEcceceeecieiee e e e e st e te e e ae s nae e tesre e sneesneesneesreesrnesneens 218
DELECHNG EAGESccviveeeiitiriesieieie ettt b e e nn s 222
REMOVING NOISEcveiieciecee sttt et e te s a e s re e ae e sreesreenneesaeeeeenrennes 225
Windowing t0 REMOVE NOISEccoceiriiriirieieeeeriee et e 225
Lee Filtering to REMOVE NOISEcceevieiiierece e 229
Chapter 9
Extracting and Analyzing Shapesccoooiiiiiiiiiiiiicc e, 233
Overview of Extracting and Analyzing Image Shapescccccevovvrieeiecene e 234
Applying aMorphological Structuring Elementto an Imagecccccoeevvveeevieneenee. 234
Determining Structuring Element Shapes and SIZeS ... 237
Determining Intensity Values for Threshold and Strefchccovcvvee e 240
Thresnolding 8N IMAJEceeieereee e 241
SEretChiNg @N TMEJE ...oveeciecee e e e s e e e sne e 242
Eroding and Dilating IMage ODJECEScccovierieriririserieeeere s 243
CharaCteristiCS Of EFOSIONocueeuieriirierieeiesie ettt st e 243
Characteristics Of Dilalioncccveieieneeesese et 243
Applying Erosion and Dilationccccevviieeieriien e seese e e 243
Smoothing With MORPH_OPENcciiiiiicinenreee e 248
Smoothing With MORPH_CLOSEccoiiiiiirene e 251
Detecting Peaks Of BrghtNESSooeeiiriiccee e 254
Creating Image ObjeCt BOUNAAIESccviriirieirisireeeeeee s 257
Selecting Specific IMage ODJECESccciviceever et 261
Detecting EAges of IMage ODJECESccceeiiirinieeneee s 266

Contents Image Processing in IDL

Creating DIStanNCe MaDS ...ccccviieiceieie ettt ettt s re e besresreeneas 269
ThinnNing IMAage ODJECESccviiciicie et e e e ettt e e e e saee st ereesnee e 272
Combining MorphologiCal OPErationscccueieeiieerieeie e 277
ANAlYZiNg IMage SNEPESocviirieierer e e 282

Using LABEL_REGION to Extract Image Object Informationcccccceveeennee. 282

Using CONTOUR to Extract Image Object Informationcccceevverereneneneene 286
IO X i et 291

Image Processing in IDL Contents

Chapter 1

Introduction to Image
Processing In IDL

This chapter describes the following topics:

Overview of Image Processing 10 Accessnglmages.................... 15
Understanding Image Definitionsin IDL .. 12 References 16
Representing Image DatainIDL 13

Image Processing in IDL 9

10 Chapter 1: Introduction to Image Processing in IDL

Overview of Image Processing

Today, the medical industry, astronomy, physics, chemistry, forensics, remote
sensing, manufacturing, and defense are just some of the many fields that rely upon
images to store, display, and provide information about the world around us. The
challenge to scientists, engineers and business peopleisto quickly extract valuable
information from raw image data. Thisis the primary purpose of image processing —
converting images to information.

This book explains how to process images using IDL (Interactive Data L anguage).
IDL isahigh-level programming language that contains an extensive library of image
processing and analysis routines. With IDL, you can quickly access image data and
begin investigating the best way to extract useful information.

Each chapter introduces image processing topics and includes information regarding
when one method may be preferred over another to enhance specific image features.
Numerous step-by-step examplesillustrate IDL’s image processing and analysis
routines, allowing you to quickly understand how to get the desired results when
working with your own image data. Thisbook is not intended to be a complete source
for image processing knowledge, an advanced image processing manual or an image
processing reference guide. This book is designed to teach people how to use IDL to
perform basic image processing, and does not assume that they are already expertsin
the field of image processing.

Digital Images and Image Processing

A digita imageis composed of agrid of pixels and stored as an array. A single pixel
represents avalue of either light intensity or color. Images are processed to obtain
information beyond what is apparent given the image'sinitial pixel values. Image
processing tasks can include any combination of the following:

Modifying the Image View — Transforming, translating, rotating and resizing
images are common tasks used to focus the viewer's attention on a specific area of
theimage. Chapter 2, “Transforming Image Geometry” provides information on how
to precisaly position images using IDL.

Adding Dimensionality to Image Data — Some images provide more information
when they are placed on a polygon, surface, or geometric shape such as a sphere.
Chapter 3, “Mapping an Image onto Geometry” shows how to display images over
surfaces and geometric shapes.

Overview of Image Processing Image Processing in IDL

Chapter 1: Introduction to Image Processing in IDL 11

Working with Masks and Calculating Statistics — Image processing uses some
fundamental mathematical methods to alter image arrays. These include masking,
clipping, locating, and statistics. Chapter 4, “Working with Masks and Image
Statistics™ introduces these operations and provides examples of masking and
calculating image statistics.

Warping Images — Some data acquisition methods can introduce an unwanted
curvature into an image. |mage warping using control points can realign an image
along aregular grid or align two images captured from different perspectives. See
Chapter 5, “Warping Images” for more information.

Specifying Regions of Interest (ROIs) — When processing an image, you may
want to concentrate on a specific region of interest (ROI). ROIs can be determined,
displayed, and analyzed within IDL as described in Chapter 6, “Working with
Regions of Interest (ROIs)”.

Manipulating Images in Various Domains — One of the most useful toolsin
image processing is the ability to transform an image from one domain to another.
Additional information can be derived from images displayed in frequency, time-
frequency, Hough, and Radon domains. Moreover, some complex processing tasks
are simpler within these domains. See Chapter 7, “Transforming Between Domains”
for details.

Enhancing Contrast and Filtering — Contrasting and filtering provide the ability
to smooth, sharpen, enhance edges and reduce noise within images. See Chapter 8,
“Contrasting and Filtering” for details on manipulating contrast and applying filters
to highlight and extract specific image features.

Extracting and Analyzing Shapes — Morphological operations provide a means
of determining underlying image structures. Used in combination, these routines
provide the ability to highlight, extract, and analyze features within an image. See
Chapter 9, “Extracting and Analyzing Shapes” for details.

Before processing images, it isimportant to understand how images are defined, how
image data is represented, and how images are accessed (imported and exported)
within IDL. These topics are described within the following sections of this chapter:

* “Understanding Image Definitionsin IDL” on page 12
e “Representing Image Datain IDL” on page 13
e “Accessing Images’ on page 15

Image Processing in IDL Overview of Image Processing

12 Chapter 1: Introduction to Image Processing in IDL

Understanding Image Definitions in IDL

An understanding of basic image definitions is necessary before proceeding with
image processing tasks. Some routines are specifically designed for certain types of
images. Binary, grayscale, and indexed images are two-dimensional arrays, while
RGB images are three-dimensional arrays. In which group an image belongsis
determined by its contents and how it relates to its color information.

Within IDL, an image can be categorized as follows:

Image Type Descriptions

Binary Images Binary images contain only two values (off or on). The off
valueisusually azero and the on value is usualy aone. This
type of image is commonly used as a multiplier to mask
regions within another image.

Grayscale Images | Grayscal e images represent intensities. Pixels range from least
intense (black) to most intense (white). Pixel values usually
range from 0 to 255 or are scaled to this range when displayed.

Indexed Images | Instead of intensities, a pixel value within an indexed image
relates to a color value within a color lookup table. Since
indexed images reference color tables composed of up to 256
colors, the data values of these images are usually scaled to
range between 0 and 255.

RGB Images Within the three-dimensional array of an RGB image, two of
the dimensions specify the location of a pixel within animage.
The other dimension specifies the color of each pixel The
color dimension always has asize of 3 and is composed of the
red, green, and blue color bands (channels) of theimage.

Table 1-1: Image Definitions

Note
Grayscale and binary images can actually be treated as indexed images with an
associated grayscale color table.

Color information can also be represented in other forms, which are described in
“Color Systems’ (Chapter 5, Using IDL).

Understanding Image Definitions in IDL Image Processing in IDL

Chapter 1: Introduction to Image Processing in IDL 13

Representing Image Data in IDL

Pixel valuesin an image file can be stored in many different data types. IDL
maintains 15 different data types. The original datatype of an image is reflected in
IDL when importing the image, but the type can be converted once the image is
stored in an IDL variable. The following types are commonly used for images:

* Byte— An 8-bit unsigned integer ranging in value from O to 255. Pixelsin
images are commonly represented as byte data.

» Unsigned Integer — A 16-hit unsigned integer ranging from 0 to 65535.
e Signed Integer — A 16-bit signed integer ranging from -32,768 to +32,767.

e Unsigned Longword Integer — A 32-bit unsigned integer ranging in value
from O to approximately four billion.

e Longword Integer — A 32-bit sighed integer ranging in value from
approximately minus two billion to plus two billion.

* Hoating-point — A 32-bit, single-precision, floating-point number in the
range from -10%8 to 1038, with approximately 6 or 7 decimal places of
significance.

* Double-precision — A 64-bit, double-precision, floating-point number in the
range from -10%%8 to 103%8 with approximately 14 decimal places of
significance.

While pixel values are commonly stored in files as whole numbers, they are usually
converted to floating-point or double-precision data types prior to performing
numerical computations. See the examples section of “REFORM” (IDL Reference
Guide) and “Calculating Image Statistics” in Chapter 4 for more information.

IDL provides predefined routines to convert data from one type to another. These
routines are shown in the following table:

Function Description
BYTE Convert to byte
BYTSCL Scale data to range from 0 to 255 and then convert to byte
UINT Convert to 16-bit unsigned integer
FIX Convert to 16-bit integer, or optionally other type

Table 1-2: Some IDL Data Type Conversion Functions

Image Processing in IDL Representing Image Data in IDL

14 Chapter 1: Introduction to Image Processing in IDL
Function Description
ULONG Convert to 32-bit unsigned integer
LONG Convert to 32-bit integer
FLOAT Convert to floating-point
DOUBLE Convert to double-precision floating-point

Table 1-2: Some IDL Data Type Conversion Functions (Continued)

Representing Image Data in IDL

Image Processing in IDL

Chapter 1: Introduction to Image Processing in IDL 15

Accessing Images

How an image isimported into IDL depends upon whether it is stored in an
unformatted binary file or acommon image file format. IDL can query and import
image data contained in the image file formats listed in “ Supported File Formats”
(Chapter 1, Using IDL).

Note
IDL can also import and export images stored in scientific data formats, such HDF
and netCDF. For more information on these formats, see the Scientific Data
Formats manual.

See “Importing and Writing Datainto Variables” (Chapter 3, Using IDL) for details
on dataaccessin IDL. This chapter and the IDL Reference Guide provide details on
the file access routines used in examples in the following chapters.

Querying Images

Common image file formats contain standardized header information that can be
queried. IDL providesthe QUERY _IMAGE function to return valuable information
about images stored in supported image file formats. For information on using
QUERY _IMAGE, see “Returning Image File Information” (Chapter 4, Using IDL).

Image Processing in IDL Accessing Images

16

Chapter 1: Introduction to Image Processing in IDL

References

References

The following image processing sources were used in writing this book:

Baxes, Gregory A. Digital Image Processing: Principles and Applications. John
Wiley & Sons. 1994. ISBN 0-471-00949-0

Lee, Jong-Sen. “ Speckle Suppression and Analysis for Synthetic Aperture Radar
Images’, Optical Engineering. vol. 25, no. 5, pp. 636 - 643. May 1986.

Russ, John C. The Image Processing Handbook, Third Edition. CRC Press LLC.
1999. ISBN 0-8493-2532-3

Weeks, Jr., Arthur R. Fundamentals of Electronic Image Processing. The Society of
Photo-Optical Instrumentation Engineers. 1996. ISBN 0-8194-2149-9

Image Processing in IDL

Chapter 2

Transforming Image

Geometry

This chapter describes the following topics:

Overview of Geometric Transformations .. 18

Croppinglmages 20
Paddinglmages 23
Resizinglmages...................... 26
Shiftinglmages 28

Image Processing in IDL

Reversinglmages 30
Transposinglmages 32
Rotatinglmages 34
Planar Slicing of VolumetricData 38

17

18 Chapter 2: Transforming Image Geometry

Overview of Geometric Transformations

Geometric image transformation functions use mathematical transformationsto crop,
pad, scale, rotate, transpose or otherwise ater an image array to produce a modified
view of an image. The transformations described in this chapter are linear
transformations. For a description of non-linear geometric transformations, see
Chapter 5, “Warping Images’.

When an image undergoes a geometric transformation, some or al of the pixels
within the source image are relocated from their origina spatial coordinatesto anew
position in the output image. When arelocated pixel does not map directly onto the
center of apixel location, but falls somewhere in between the centers of pixel
locations, the pixel’s value is computed by sampling the values of the neighboring
pixels. Thisresampling, aso known as interpolation, affects the quality of the output
image. See “Interpolation Methods’ (Chapter 5, Using IDL) for more information.

Note
In this book, Direct Graphics examples are provided by default. Object Graphics
examples are provided in cases where significantly different methods are required.

The following list introduces image processing tasks and associated IDL image
processing routines covered in this chapter.

Task Routine(s) Description
“Cropping SIZE Focuses attention on important image
Images’ on CURSOR features by creating a rectangular region
page 20. of interest.
“Padding SIZE Creates a border around the perimeter of
Images’ on an image for presentation or advanced
page 23. filtering purposes.
“Resizing CONGRID Enlarges or shrinks an image.
Images” on REBIN
page 26.
“Shifting SHIFT Shifts image pixel values along any
Images’ on image dimension.
page 28.

Table 2-1: Image Processing Tasks and Related
Image Processing Routines

Overview of Geometric Transformations Image Processing in IDL

Chapter 2: Transforming Image Geometry

19

Task Routine(s) Description
“Reversing REVERSE Reverses array elementsto flip an image
Images’ on horizontally or vertically.
page 30.
“Transposing TRANSPOSE Interchanges array dimensions, reflecting
Images’ on the image about a 45 degree line.
page 32.
“Rotating ROTATE Rotates an image to any orientation,
Images’ on ROT using 90 degree or arbitrary increments.
page 34.
“Planar Slicing | EXTRACT_SLICE | Displaysasingle dlice or a series of
of Volumetric SLICER3 planar slicesin a single window or
Data’ on o interactively extracts planar slices of
page 38. XVOLUME volumetric data.
Table 2-1: Image Processing Tasks and Related
Image Processing Routines (Continued)
Note

This chapter uses data files from the IDL. examples/data directory. Two files,
data.txt and index. txt, contain descriptions of the files, including array sizes.

Image Processing in IDL

Overview of Geometric Transformations

20 Chapter 2: Transforming Image Geometry
Cropping Images

Cropping an image extracts arectangular region of interest from the original image.
This focuses the viewer's attention on a specific portion of the image and discards
areas of the image that contain less useful information. Using image cropping in
conjunction with image magnification allows you to zoom in on a specific portion of
the image. This section describes how to exactly define the portion of the image you
wish to extract to create a cropped image. For information on how to magnify a
cropped image, see “Resizing Images’ on page 26.

Image cropping requires apair of (X, y) coordinatesthat define the corners of the new,
cropped image. The following example extracts the African continent from an image
of the world. Complete the following steps for a detailed description of the process.

Example Code
See cropworld.pro inthe examples/doc/image subdirectory of the IDL
installation directory for code that duplicates this example. Run the example
procedure by entering cropworld at the IDL command prompt or view thefilein
an IDL Editor window by entering . EDIT cropworld.pro.

1. Opentheworld imagefile, using ther, ¢, B argumentsto obtain the image's
color information:

world = READ_PNG (FILEPATH ('avhrr.png',6 $
SUBDIRECTORY = ['examples', 'data'l), R, G, B)

2. Preparethe display device and load the color table with the red, green and blue
values retrieved from the image file in the previous step:

DEVICE, RETAIN = 2, DECOMPOSED = 0
TVLCT, R, G, B

3. Get the size of theimage and prepare the window display using the dimensions
returned by the SIZE command:

worldSize = SIZE(world, /DIMENSIONS)
WINDOW, 0, XSIZE = worldSize[0], YSIZE = worldSizel[1l]

4. Display theimage:
TV, world

In this example, we will crop the image to display only the African continent
as shown in the following figure. Two sets of coordinates, (LeftLowX,
LeftLowY) and (RightTopX, RightTopY), will be used to create the new,
cropped image array.

Cropping Images Image Processing in IDL

javascript:doIDL("cropworld")
javascript:doIDL(".edit cropworld.pro")

Chapter 2: Transforming Image Geometry 21

(RightTopX, RightTopY)

(LeftLowX, LeftLowY)

Figure 2-1: Defining the Boundaries of the Cropped Image Array

In the following step, use the CURSOR function to define the boundaries of
the cropped image. The values returned by the CURSOR function will be
defined as the variables shown in the previous image.

Note
To crop an image without interactively defining the cursor position, you can
use the actual coordinates of the cropped image array in place of the
coordinate variables, (LeftLowX, LeftLowY) and (RightTopX, RightTopY).
See CropWorld.pro inthe examples/doc/image subdirectory of the
IDL instalation directory for an example.

5. Usethe cursor function to define the lower-left corner of the cropped image by
entering the following line:

CURSOR, LeftLowX, LeftLowY, /DEVICE

The cursor changesto a cross hair symbol when it is positioned over the
graphics window. Click in the area to the left and below the African continent.

Image Processing in IDL Cropping Images

22 Chapter 2: Transforming Image Geometry

Note
Thevaluesfor LeftLowx and LeftLowy appear inthe DL Workbench
Variable Watch window. Alternately, use PRINT, LeftLowX, LeftLowY
to display these values.

6. Define the upper-right corner of the cropped image. Enter the following line
and then click above and to the right of the African continent.

CURSOR, RightTopX, RightTopY, /DEVICE

7. Name the cropped image and define its array using the lower-left and upper-
right x and y variables:

africa = world[LeftLowX:RightTopX, LeftLowY:RightTopY]
8. Prepare awindow based on the size of the new array:

WINDOW, 2, XSIZE = (RightTopX - LeftLowX + 1), $
YSIZE = (RightTopY - LeftLowY + 1)

9. Display the cropped image:
TV, africa

Your image should appear similar to the following figure.

Figure 2-2: Result of the Cropped Image Example

Cropping Images Image Processing in IDL

Chapter 2: Transforming Image Geometry 23

Padding Images

Image padding introduces new pixels around the edges of an image. The border
provides space for annotations or acts as a boundary when using advanced filtering

techniques.

This exercise adds a 10-pixel border to left, right and bottom of the image and a 30-
pixel border at the top allowing space for annotation. The diagonal linesin the
following image represent the area that will be added to the original image. For an
example of padding an image, complete the following steps.

Example Code
Seepaddedimage.pro inthe examples/doc/image subdirectory of the IDL

installation directory for code that duplicates this example. Run the example
procedure by entering paddedimage at the IDL command prompt or view thefile
in an IDL Editor window by entering .EDIT paddedimage.pro.

30 pixel pad

10 pixel pads

Figure 2-3: Diagonal Lines Indicate Padding

Image Processing in IDL Padding Images

javascript:doIDL("paddedimage")
javascript:doIDL(".edit paddedimage.pro")

24

Chapter 2: Transforming Image Geometry

To add a border around the earth image, complete the following steps:

1. Opentheworld imagefile:

Padding Images

earth = READ_PNG (FILEPATH('avhrr.png', $
SUBDIRECTORY = ['examples', 'data'l), R, G, B)

Prepare the display device:
DEVICE, DECOMPOSED = 0, RETAIN = 2

L oad the color table with the red, green and blue values retrieved from the
image in step 1 and modify the color table so that the final index value of each
color band is the maximum color value (white):

TVLCT, R, G, B
maxColor = !D.TABLE_SIZE - 1
TVLCT, 255, 255, 255, maxColor

Get the size of the image by entering the following line:
earthSize = SIZE(earth, /DIMENSIONS)

Define the amount of padding you want to add to the image. This example
adds 10 pixelsto the right and left sides of the image equalling atotal of 20
pixels along the x-axis. We aso add 30 pixels to the top and 10 pixelsto the
bottom of the image for atotal of 40 pixels along the y-axis.

Using the REPLICATE syntax, Result = REPLICATE (Value, D1, ..., D8]),
create an array of the specified dimensions, and set Value equal to the byte
value of the final color index to make the white border:

paddedEarth = REPLICATE (BYTE (maxColor), earthSize[0] + 20, $
earthSize[1l] + 40)

Note
The argument BYTE (maxColor) inthe previous line produces awhite
background only when white is designated as the final index value for the
red, green and blue bands of the color table you are using. As shown in step
3, this can be accomplished by setting each color component (of the color
table entry indexed by maxColor) to 255.

See " Graphic Display Essentials’ (Chapter 5, Using IDL) for detailed
information about modifying color tables.

Image Processing in IDL

Chapter 2: Transforming Image Geometry 25

6. Copy the original image, earth, into the appropriate portion of the padded
array. The following line places the lower-left corner of the original image
array at the coordinates (10, 10) of the padded array:

paddedEarth [10,10] = earth

7. Prepare awindow to display the image using the size of the original image plus
the amount of padding added along the x and y axes:

WINDOW, 0O, XSIZE = earthSize[0] + 20, S
YSIZE = earthSize[l] + 40

8. Display the padded image.
TV, paddedEarth
9. Place atitle at the top of the image using the XYOUTS procedure.

= (earthSize[0]/2) + 10
= earthSize[l] + 15
YOUTS, x, y, 'World Map', ALIGNMENT = 0.5, COLOR = 0, $
/DEVICE

X
Y
X

The resulting image should appear similar to the following figure.

Werld Map

Figure 2-4: Resulting Padded Image

Image Processing in IDL Padding Images

26 Chapter 2: Transforming Image Geometry
Resizing Images

Image resizing, or scaling, supports further image analysis by either shrinking or
expanding an image. Both the CONGRID and the REBIN functions resize one-, two-
or three-dimensional arrays. The CONGRID function resizes an image array by any
arbitrary amount. The REBIN function requires that the output dimensions of the new
array be an integer multiple of the original image’s dimensions.

When magnifying an image, new values are interpolated from the source image to
produce additional pixelsin the output image.When shrinking an image, pixels are
resampled to produce alower number of pixelsin the output image. The default
interpolation method varies according to whether you are magnifying or shrinking
the image.

When magnifying an image:

¢« CONGRID defaults to nearest-neighbor sampling with 1D or 2D arrays and
automatically uses bilinear interpolation with 3D arrays.

» REBIN defaultsto bilinear interpolation.
When shrinking an image:
* CONGRID uses nearest-neighbor interpolation to resample the image.

« REBIN averages neighboring pixel values in the source image that contribute
to asingle pixel value in the output image.

The following example uses CONGRID since it offers more flexibility. However, if
you wish to resize an array proportionally, REBIN returns results more quickly. For
an example of magnifying an image using the CONGRID function, complete the
following steps.

Example Code
Seemagnifyimage.pro inthe examples/doc/image subdirectory of the IDL
installation directory for code that duplicates this example. Run the example
procedure by entering magnifyimage atthe DL command prompt or view the
fileinan IDL Editor window by entering . EDIT magnifyimage.pro.

1. Select thefile and read in the data, specifying known data dimensions:

file = FILEPATH('convec.dat',6 $
SUBDIRECTORY = ['examples', 'data'])
image = READ_BINARY (file, DATA_DIMS = [248, 248])

2. Load acolor table and prepare the display device:

Resizing Images Image Processing in IDL

javascript:doIDL("magnifyimage")
javascript:doIDL(".edit magnifyimage.pro")

Chapter 2: Transforming Image Geometry 27

LOADCT, 28
DEVICE, DECOMPOSED = 0, RETAIN = 2

3. Prepare the window and display the original image:

WINDOW, 0, XSIZE = 248, YSIZE = 248
TV, image

4. Usethe CONGRID function to increase the image array size to 600 by 600
pixels and force bilinear interpolation:

magnifiedImg = CONGRID(image, 600, 600, /INTERP)
5. Display the magnified image in a new window:

WINDOW, 1, XSIZE = 600, YSIZE = 600
TV, magnifiedImg

The following figure displays the original image (left) and the magnified view of the
image (right).

Figure 2-5: Original Image and Magnified Image

Image Processing in IDL Resizing Images

28 Chapter 2: Transforming Image Geometry
Shifting Images

The SHIFT function moves elements of avector or array along any dimension by any
number of elements. All shifts are circular. Elements shifted off one end are wrapped
around, appearing at the opposite end of the vector or array.

Occasionally, image files are saved with array elements offset. The SHIFT function
allows you to easily correct such images assuming you know the amounts of the
vertical and horizontal offsets. In the following example, the x-axis of original image

is offset by a quarter of the image width, and the y-axisis offset by athird of the
height.

Figure 2-6: Example of Misaligned Image Array Elements

Using the SHIFT syntax, Result = SHIFT (Array, S;, ..., Sp),wewill enter
negative values for the s (dimension) amounts in order to correct the image offset.

Example Code
See shiftimageoffset.pro intheexamples/doc/image subdirectory of the
IDL instalation directory for code that duplicates this example. Run the example
procedure by entering shiftimageoffset atthelDL command prompt or view
thefilein an IDL Editor window by entering . EDIT shiftimageoffset.pro.

1. Select theimagefile and read it into memory:

file = FILEPATH('shifted_endocell.png', $
SUBDIRECTORY = ['examples', 'data'l])

Shifting Images Image Processing in IDL

javascript:doIDL("shiftimageoffset")
javascript:doIDL(".edit shiftimageoffset.pro")

Chapter 2: Transforming Image Geometry 29

image = READ_PNG(file, R, G, B)
2. Preparethe display device and load the image's associated color table:

DEVICE, DECOMPOSED = 0, RETAIN = 2
TVLCT, R, G, B

3. Get the size of theimage, prepare awindow based upon the values returned by
the SIZE function, and display the image to be corrected:
imageSize = SIZE(image, /DIMENSIONS)
WINDOW, 0, XSIZE = imageSize([0], YSIZE = imageSizel[l], $
TITLE = 'Original Image'
TV, image
4. Use SHIFT to correct the original image. Move the elements along the x-axis
to the left, using a quarter of the array width as the x-dimension values. Move
the y-axis elements, using one third of the array height as the number of
elements to be shifted. By entering negative values for the amount the image
dimensions are to be shifted, the array el ements move toward the x and y axes.

image = SHIFT (image, - (imageSize[0]/4), -(imageSize[l1l]1/3))
5. Display the corrected image in a second window:

WINDOW, 1, XSIZE = imageSize[0], YSIZE = imageSizel[l], $
TITLE='Shifted Image'
TV, image

The following figure displays the corrected image.

Figure 2-7: Resulting Shifted Array

Image Processing in IDL Shifting Images

30 Chapter 2: Transforming Image Geometry

Reversing Images

The REVERSE function allows you to reverse any dimension of an array. This
alowsyou to quickly change the viewing orientation of an image (flipping it
horizontally or vertically).

Note that in the REVERSE syntax,
Result = REVERSE (Array [, Subscript_Index]|[,/OVERWRITE])

Subscript_Tndex Specifiesthe dimension number beginning with 1, not 0 as with
some other functions.

The following example demonstrates reversing the x-axis values (dimension 1) and
the y-axis values (dimension 2) of an image of a knee.

Example Code
Seereverseimage.pro inthe examples/doc/image subdirectory of the IDL
installation directory for code that duplicates this example. Run the example
procedure by entering reverseimage atthelDL command prompt or view the
filein an IDL Editor window by entering .EDIT reverseimage.pro.

1. Select the DICOM image of the knee and get the image's dimensions:

image = READ_DICOM (FILEPATH('mr_knee.dcm',6 $
SUBDIRECTORY = ['examples', 'data'l))
imgSize = SIZE (image, /DIMENSIONS)

2. Prepare the display device and load the gray scale color table;

DEVICE, DECOMPOSED = 0, RETAIN = 2
LOADCT, O

3. Usethe REVERSE function to reverse the x-axis values (f 1 ipHorzImg) and
y-axisvalues (flipvertImg):

flipHorzImg
flipVertImg

REVERSE (image, 1)
REVERSE (image, 2)

4. Create an output window that is 2 times the size of the x-dimension of the
image and 2 times the size of the y-dimension of the image:

WINDOW, 0, XSIZE = 2*imgSize[0], YSIZE = 2*imgSizel[l], $
TITLE = 'Original (Top) & Flipped Images (Bottom)'

5. Display theimages, controlling their placement in the graphics window by
using the Position argument to the TV command:

TV, image, 0

Reversing Images Image Processing in IDL

javascript:doIDL("reverseimage")
javascript:doIDL(".edit reverseimage.pro")

Chapter 2: Transforming Image Geometry 31

TV, flipHorzImg, 2
TV, flipVertImg, 3

Your output should appear similar to the following figure.

Figure 2-8: Original Image (Top); Reversed Dimension 1 (Bottom Left); and
Reversed Dimension 2 (Bottom Right)

Image Processing in IDL Reversing Images

32 Chapter 2: Transforming Image Geometry

Transposing Images

Transposing an image array interchanges array dimensions, reflecting an image about
adiagonal (for example, reflecting a square image about a45 degree line). By default,
the TRANSPOSE function reverses the order of the dimensions. However, you can
control how the dimensions are altered by specifying the optional vector, 7, in the
following statement:

Result = TRANSPOSE (Arrayl[, P])

The values for p start at zero and correspond to the dimensions of the array. The
following exampl e transposes a photomicrograph of smooth muscle cells.

Example Code
See transposeimage.pro inthe examples/doc/image subdirectory of the
IDL installation directory for code that duplicates this example. Run the example
procedure by entering transposeimage at thel DL command prompt or view the
fileinan IDL Editor window by entering . EDIT transposeimage.pro.

1. Openthefile and prepare to display it with a color table:

READ_JPEG, FILEPATH('muscle.jpg', $

SUBDIRECTORY=['examples', 'data'l), image
DEVICE, DECOMPOSED = 0, RETAIN = 2
LOADCT, O

2. Display the original image:
WINDOW, 0, XSIZE = 652, YSIZE = 444, TITLE = 'Original Image'
TV, image

3. Reducetheimage size for display purposes:
smallImg = CONGRID (image, 183, 111)

4. Using the TRANSPOSE function, reverse the array dimensions. This
essentially flips the image across its main diagona axis, moving the upper left
corner of the image to the lower right corner.

transposeImgl = TRANSPOSE (smallImg)
WINDOW, 1, XSIZE = 600, YSIZE = 183, TITLE = 'Transposed

Images'
TV, transposeImgl, O

5. Specifying the reversal of the array dimensions leads to the same result since
thisis the default behavior of the TRANSPOSE function.

transposeImg2 = TRANSPOSE (smallImg, [1,0])
TV, transposelImg2, 2

Transposing Images Image Processing in IDL

javascript:doIDL("transposeimage")
javascript:doIDL(".edit transposeimage.pro")

Chapter 2: Transforming Image Geometry 33

6. However, specifying the original arrangement of the array dimensions results
in no image transposition.

transposeImg3 = TRANSPOSE(smallImg, [0,1])
TV, transposelImg3, 2

The following figure displays the original image (top) and the results of the various
TRANSPOSE statements (bottom).

Figure 2-9: Original (Top) and Transposed Images (Bottom) from Left to Right,
transposelmgl, transposelmg2, and transposelmg3

Image Processing in IDL Transposing Images

34 Chapter 2: Transforming Image Geometry

Rotating Images

To change the orientation of an image in IDL, use either the ROTATE or the ROT
function. The ROTATE function changes the orientation of an image by 90 degree
increments and/or transposes the array. The ROT function rotates an image by any
amount and offers additional resizing options. For more information, see “Using the
ROT Function for Arbitrary Rotations” on page 36.

Rotating an Image by 90 Degree Increments

The following example changes the orientation of an image by rotating it 270°.

Example Code
Seerotateimage.pro inthe examples/doc/image subdirectory of the IDL
installation directory for code that duplicates this example. Run the example
procedure by entering rotateimage at the DL command prompt or view thefile
in an IDL Editor window by entering .EDIT rotateimage.pro.

1. Select thefile and read in the data, specifying known data dimensions:

file = FILEPATH('galaxy.dat',6 $

SUBDIRECTORY=['examples', 'data'l)
image = READ_BINARY (file, DATA_DIMS = [256, 256])
2. Prepare the display device, load acolor table, create awindow, and display the
image:
DEVICE, DECOMPOSED = 0, RETAIN = 2
LOADCT, 4

WINDOW, 0, XSIZE = 256, YSIZE = 256
TVSCL, image

3. Using the ROTATE syntax, Result = ROTATE (Array, Direction), rotate the
galaxy image 270° counterclockwise by setting the Direction argument equal
to 3. See “ROTATE Direction Argument Options” on page 35 for more
information.

rotateImg = ROTATE (image, 3)
4. Display the rotated image.

Window, 1, XSIZE = 256, YSIZE = 256,
TVSCL, rotatelImg

Rotating Images Image Processing in IDL

javascript:doIDL("rotateimage")
javascript:doIDL(".edit rotateimage.pro")

Chapter 2: Transforming Image Geometry 35

The following figure displays the original (left) and the rotated image (right).

Figure 2-10: Using ROTATE to Alter Image Orientation

ROTATE Direction Argument Options

The following table describes the Direction options avail able with the ROTATE
function syntax, Result = ROTATE (Array, Direction).

Direction Transpose? Counr\t)g:?ltci)c::rllwise Sl’rirzgtlae
0 No None F
. - o e
5 No 180° 1
3 No 270° .
2 Yes None .|
5 Yes 90° AL
5 Ves 180° F
. Yes 270° -

Table 2-2: Direction Options Available with ROTATE

Image Processing in IDL Rotating Images

36

Chapter 2: Transforming Image Geometry

Using the ROT Function for Arbitrary Rotations

The ROT function supports clockwise rotation of an image by any specified amount
(not limited to 90 degree increments). Keywords also provide a means of optionally
magnifying the image, selecting the pivot point around which the image rotates, and
using either bilinear or cubic interpolation. If you wish to rotate an image only by 90
degree increments, ROTATE produces faster results.

The following example opens aimage of awhirlpool galaxy, rotatesit 33° clockwise
and shrinks it to 50% of itsoriginal size.

Example Code

Seearbitraryrotation.prointheexamples/doc/image subdirectory of the
IDL installation directory for code that duplicates this example. Run the example
procedure by entering arbitraryrotation atthelDL command prompt or
view thefilein an IDL Editor window by entering . EDIT
arbitraryrotation.pro.

1

Rotating Images

Select the file and read in the data, specifying known data dimensions:

file = FILEPATH('m51.dat', $
SUBDIRECTORY = ['examples', 'data'l)
image = READ_BINARY (file, DATA_DIMS = [340, 440])

Prepare the display device and load a black and white color table:

DEVICE, DECOMPOSED = 0, RETAIN = 2
LOADCT, O

Create awindow and display the original image:

WINDOW, 0, XSIZE = 340, YSIZE = 440
TVSCL, image

Using the ROT function syntax,

Result=ROT (A, Angle, [Mag, X,, Yyl [,/INTERP]
[,CUBIC=value{-1 to 0}] [, MISSING=value] [,/PIVOT])

enter the following line to rotate the image 33°, shrink it to 50% of its original
size, and fill the image display with a neutral gray color where there are no
original pixel values:

arbitraryImg = ROT(image, 33, .5, /INTERP, MISSING = 127)

Display the rotated image in a new window by entering the following two
lines:

WINDOW, 1, XSIZE = 340, YSIZE = 440

Image Processing in IDL

javascript:doIDL("arbitraryrotation")
javascript:doIDL(".edit arbitraryimage.pro")
javascript:doIDL(".edit arbitraryimage.pro")

Chapter 2: Transforming Image Geometry 37

TVSCL, arbitraryImg

Your output should appear similar to the following figure.

Figure 2-11: The Original Image (Left) and Modified Image (Right)

ThemIssiNG keyword maintains the original image's boundaries, keeping the
interpolation from extending beyond the original image size. Replacing MISSING =
127 with MISSING = 0 inthe previous example creates ablack background by
using the default pixel color value of 0. Removing the mrssING keyword from the
same statement allows the image interpol ation to extend beyond the image’s original
boundaries.

Image Processing in IDL Rotating Images

38 Chapter 2: Transforming Image Geometry

Planar Slicing of Volumetric Data

Volumetric displays are composed of a series of 2D dices of data which are layered
to produce the volume. IDL provides routines that allow you to display a series of the
2D dlicesin asingle image window, display single orthogonal or non-orthogonal
dices of volumetric data, or interactively extract slices from a 3D volume. For more
information, see the following sections:

» “Displaying a Series of Planar Slices’ in the following section
e “Extracting a Slice of Volumetric Data” on page 40

* “Interactive Planar Slicing of Volumetric Data” on page 42
Displaying a Series of Planar Slices
The following example displays 57 Magnetic Resonance Imaging (MRI) slices of a

human head within asingle window aswell asasingle slicewhich is perpendicular to
the MRI data.

Example Code
Seedisplayslices.pro inthe examples/doc/image subdirectory of the IDL
installation directory for code that duplicates this example. Run the example
procedure by entering displayslices atthelDL command prompt or view the
filein an IDL Editor window by entering .EDIT displayslices.pro.

1. Select thefile and read in the data, specifying known data dimensions:

file = FILEPATH('head.dat', SUBDIRECTORY = ['examples',
'data'])
image = READ_BINARY (file, DATA_DIMS = [80, 100, 57])

2. Load acolor table to more easily distinguish between data val ues and prepare
the display device:

LOADCT, 5
DEVICE, DECOMPOSED = 0, RETAIN = 2

3. Create the display window. When displaying all 57 slices of the array in a
single window, the image size (80 by 100) and the number of dlices (57)
determine the window size. In this case, 10 columns and 6 rowswill contain all
57 dlices of the volumetric data.

WINDOW, 0, XSIZE = 800, YSIZE = 600

Planar Slicing of Volumetric Data Image Processing in IDL

javascript:doIDL("displayslices")
javascript:doIDL(".edit displayslices.pro")

Chapter 2: Transforming Image Geometry 39

4. Usethevariable i inthefollowing FOR statement to incrementally display
each imagein the array. The i also functions to control the positioning which,
by default, uses the upper left corner asthe starting point. Use 255b - array
to display the images using the inverse of the selected color table and the
ORDER keyword to draw each image from the top down instead of the bottom

up.
FOR 1 = 0, 56,1 DO TVSCL, 255b - image [*,*,i], /ORDER, i

5. To extract acentral slice from they, z plane, which is perpendicular to the x, y
plane of the MRI scans, specify 40 for the x-dimension value. Use REFORM
to decrease the number of array dimensions so that TV can display the image:

sliceImg = REFORM (image[40,*,*])
Thisresultsin a 100 by 57 array.
6. Use CONGRID to compensate for the sampling rate of the scan dlices:
sliceImg = CONGRID(sliceImg, 100, 100)
7. Display the dlice in the 47th window position:
TVSCL, 255b - sliceImg, 47

Since the image size is now 100 x 100 pixels, the 47th position in the 800 by
600 window is the final position.

Image Processing in IDL Planar Slicing of Volumetric Data

40 Chapter 2: Transforming Image Geometry

Your output should be similar to the following figure.

>~ (o

&

@ @}
X I

.«.II

a
{2

@ O Q " k 4 AZ.EA

Figure 2-12: Planar Slices of a MRI Scan of a Human Head

Note
This method of extracting dices of datais limited to orthogonal sices only. You
can extract single orthogonal and non-orthogonal slices of volumetric data using
EXTRACT_SLICE, described in the following section. See “Extracting a Slice of
Volumetric Data” below for more information.

Extracting a Slice of Volumetric Data

The EXTRACT _SLICE function extracts a single two-dimensional planar slice of
data from athree-dimensional volume. By setting arguments that specify the
orientation of the slice and a point in its center using the following syntax, you can
precisely control the orientation of the sicing plane.

Result = EXTRACT SLICE(Vol, Xsize, Ysize, Xcenter, Ycenter,
Zcenter, Xrot, Yrot, Zrot [, ANISOTROPY=[xspacing, yspacing,
zspacing]]l [, OUT_VAL=value] [, /RADIANS] [, /SAMPLE]

[, VERTICES=variable])

Planar Slicing of Volumetric Data Image Processing in IDL

Chapter 2: Transforming Image Geometry 41

The following example demonstrates how to use EXTRACT _SLICE to extract the
same singular dice as that shown in the previous example.

Example Code
See extractslice.pro inthe examples/doc/image subdirectory of the IDL
installation directory for code that duplicates this example. Run the example
procedure by entering extractslice atthelDL command prompt or view the
filein an IDL Editor window by entering .EDIT extractslice.pro.

1. Select thefile and read in the data, specifying known data dimensions:

file = FILEPATH('head.dat', SUBDIRECTORY = |['examples',
'data'])
volume = READ BINARY (file, DATA_DIMS =[80, 100, 57])

2. Prepare the display device and load the grayscale color table.

DEVICE, DECOMPOSED = 0, RETAIN = 2
LOADCT, O

3. Enter the following line to extract a sagittal planar slice from the MRI volume
of the head.

sliceImg = EXTRACT SLICE $
(volume, 110, 110, 40, 50, 28, 90.0, 90.0, 0.0, OUT_VAL=0)

Note
The code within the previous parentheses specifies. the volume (pata), a
size greater than the Xsize and Ysize of the volume (110, 110), the Xcenter,
Ycenter and Zcenter (40, 50, 28) denotingthe x, y, and zindex points
through which the slice will pass, the degree of x, y, and zrotation of the
dicing plane(90.0, 90.0, 0.0)andtheouT_var = 0 indicating that
elements of the output array which fall outside the original values will be
given the value of 0 or black.

4. Use CONGRID to resize the output array to an easily viewable size. Thisis
also used to compensate for the sampling rate of the scan images.

bigImg = CONGRID (sliceImg, 400, 650, /INTERP)
5. Prepare adisplay window based on the resized array and display the image.

WINDOW, 0, XSIZE = 400, YSIZE = 650
TVSCL, bigImg

Image Processing in IDL Planar Slicing of Volumetric Data

javascript:doIDL("extractslice")
javascript:doIDL(".edit extractslice.pro")

42 Chapter 2: Transforming Image Geometry

The image created by this example should appear similar to the following figure.

Figure 2-13: Example of Extracting a Slice of Data From a Volume

Interactive Planar Slicing of Volumetric Data

The series of two-dimensional images created by the magnetic resonance imaging
scan, shown in the section, “Displaying a Series of Planar Slices’ on page 38, can
aso be visualized as athree-dimensional volume using either of IDL’s interactive
volume visualization tools, SLICER3 or XVOLUME.

SLICER3 quickly creates visualizations of 3D data using IDL Direct Graphics. The
XVOLUME procedure employs IDL Object Graphics to create highly interactive
visualizations that take advantage of OpenGL hardware acceleration and multiple
processors for volume rendering. Since Object Graphics are rendered in memory and
not simply drawn, both the time and amount of virtual memory required to create a
XVOLUME visualization exceed those needed to create a Direct Graphics, SLICER3
visualization.
Tip
For more information and examples of displaying volumes and slicing volumetric
datausing XVOLUME, see “XVOLUME” (IDL Reference Guide).

Planar Slicing of Volumetric Data Image Processing in IDL

Chapter 2: Transforming Image Geometry 43

Displaying Volumetric Data Using SLICER3

The Direct Graphics SLICERS3 widget-based application allows you to view single or
multiple slices of avolume or to create an isosurface of the three-dimensiona data.
Complete the following steps to load the head. dat volume into the SLICER3
application.

Example Code
Seedisplayslicer3.pro inthe examples/doc/image subdirectory of the
IDL instalation directory for code that duplicates this example. Run the example
procedure by entering displayslicer atthelDL command prompt or view the
filein an IDL Editor window by entering .EDIT displayslicer.pro.

1. Select the datafile and read in the data using known dimensions:;

file = FILEPATH('head.dat',6 $
SUBDIRECTORY=['examples', 'data'l)
volume = READ_BINARY (file, DATA_DIMS = [80, 100, 571)

2. Todisplay all dicesof thehead.dat fileasavolumein SLICER3, create a
pointer called pdata which passes the data array information to the
SLICERS application.

pData = PTR_NEW (volume)

Note

You can load multiple arraysinto the SLICER3 application by creating a pointer for
each array. Each array must have the same dimensions.

3. Load the datainto the SLICERS3 application. The DATA_NAMES designates
the data set in the application’s Data list. Thisfield will be greyed out if only
one volumetric array has been loaded.

SLICER3, pData, DATA_NAMES ='head'

At first it is not apparent that your data has been passed to the SLICER3 application.
See the following section, “Manipulating Volumetric Data Using SLICERS3” for
details on how to use thisinterface.

Manipulating Volumetric Data Using SLICERS3

Once you have loaded a three-dimensional array into the SLICER3 application, the
interface offers numerous ways to visualize the data. The following steps cover
creating an isosurface, viewing a slice of data within the volume and rotating the

display.

Image Processing in IDL Planar Slicing of Volumetric Data

javascript:doIDL("displayslicer")
javascript:doIDL(".edit displayslicer.pro")

44

1

Chapter 2: Transforming Image Geometry

In the SLICERS application, select Surface from the M ode: list. Left-click in
the Surface Threshold window containing the logarithmic histogram plot of the
data and drag the green line to change the threshold value of the display. A
value in the low to mid 40's works well for thisimage. Click Display to view
the isosurface of the data.

Fie Took About

Mode: [Sutsce =

Surface Thieshokl

41.443262

[on i

==

Display

Figure 2-14: An Isosurface of Volumetric Data

Note
To undo an action resulting in an unwanted image in the SLICER3 window,

you can either choose Tools — Delete and select the last item on the list to
undo the last action or choose Tools — Erase to erase the entire image.

Select Slice from the M ade list. Select the Expose, Orthogonal, and X
options. Left-click in the image window and drag the mouse halfway along the
X axis and then release the mouse button. The planar slice of volumetric data
appears at the point where you release the mouse button.

Planar Slicing of Volumetric Data Image Processing in IDL

Chapter 2: Transforming Image Geometry 45

Fie Tools About

Mode:[Sice =]

 Dwawe % Expose

& Outhogonal
" Oblque

Fx CY C2

Figure 2-15: Visualizing a Slice of Volumetric Data

3. Changethe colors used to display the dice by selecting Tools — Colors —
Slice/Block. Inthe color table widget, select STD Gamma-I| from thelist and
click Done to load the new color table.

4. Changethe view of the display by selecting View from the Mode list. Here
you can change the rotation and zoom factors of the displayed image. Use the
dlider bars to rotate the orientation cube. A preview of the cube’s orientation
appearsin the small window above the controls. To create the orientation
shown in the following figure, move the slider to arotation of -18 for Z and -80
for X. Click Display to change the orientation of the image in the window.

Image Processing in IDL Planar Slicing of Volumetric Data

46 Chapter 2: Transforming Image Geometry

The following figure displays the final image.

Figure 2-16: A Slice Overlaying an Isosurface

To save theimage currently in the display window, select File — Save — Save TIFF
Image. For more information about using the SLICERS3 interface to manipulate
volumetric data, see “SLICERS3” in the IDL Reference Guide.

Note
Enter the following line after closing the SLICERS application to release memory

used by the pointer: PTR_FREE, pData

Planar Slicing of Volumetric Data Image Processing in IDL

Chapter 3
Mapping an Image onto
Geometry

This chapter describes the following topics:

Mapping Images onto Surfaces Overview .. 48 Mapping an Image onto a Sphere 57
Mapping an Image onto Elevation Data . .. 50

Image Processing in IDL a7

48 Chapter 3: Mapping an Image onto Geometry

Mapping Images onto Surfaces Overview

Mapping an image onto geometry, also known as texture mapping, involves
overlaying an image or function onto a geometric surface. Images may be realistic,
such as satellite images, or representational, such as color-coded functions of
temperature or elevation. Unlike volume visualizations, which render each voxel
(volume element) of a three-dimensional scene, mapping an image onto geometry
efficiently creates the appearance of complexity by simply layering an image onto a
surface. The resulting realism of the display also provides information that is not as
readily apparent as with asimple display of either the image or the geometric surface.

Mapping an image onto a geometric surface is atwo step process. First, the imageis
mapped onto the geometric surface in object space. Second, the surface undergoes
view transformations (relating to the viewpoint of the observer) and is then displayed
in 2D screen space. You can use IDL Direct Graphics or Object Graphics to display
images mapped onto geometric surfaces.

The following table introduces the tasks and routines covered in this chapter.

Task Routine(s)/Object(s) Description
“Mapping an SHADE_SURF Display the elevation data.
Image_onto . IDLgrWindow::Init Initialize the objects necessary
Elevation Data S . g
on page 50 IDLgrView::Init for an Object Graphics display.

' IDLgrModel::Init
IDLgrSurface::Init Initialize a surface object
containing the elevation data.
IDLgrImage::Init Initialize an image object
containing the satellite image.
XOBNVIEW Display the object in an

interactive IDL utility allowing
rotation and resizing.

Table 3-1: Tasks and Routines Associated with Mapping an Image onto
Geometry

Mapping Images onto Surfaces Overview Image Processing in IDL

Chapter 3: Mapping an Image onto Geometry

49

Task Routine(s)/Object(s) Description
“Mapping an MESH_OBJ Create a sphere.
Image onto a REPLICATE
Sphere Us ng , | SCALE3 Specify system variables
Direct Graphics required for 3D viewin
on page 57. equiredto ewing.
SET_SHADING Control the light source used by
POLY SHADE.
TVSCL Map the image onto the sphere
POLY SHADE using POLY SHADE and
display the example with
TVSCL.
“Mapping an MESH_OBJ Create a sphere.
Image Object REPLICATE
?2}10 airpZere IDLgrModel:Init Initialize moddl, palette and
Obj:cpt ’ IDLgrPalette::Init image objects.
Programming). IDLgrimage::Init
FINDGEN Create normalized coordinates
REPLICATE in order to map the image onto

the sphere.

IDLgrPolygon::Init

Assign the sphere to a polygon
object and apply the image
object.

XOBIVIEW

Display the object in an
interactive IDL utility allowing
rotation and resizing.

Table 3-1: Tasks and Routines Associated with Mapping an Image onto
Geometry (Continued)

Image Processing in IDL

Mapping Images onto Surfaces Overview

50 Chapter 3: Mapping an Image onto Geometry

Mapping an Image onto Elevation Data

The following Object Graphics example maps a satellite image from the Los
Angeles, Cdiforniavicinity onto aDEM (Digital Elevation Model) containing the
area's topographical features. The realism resulting from mapping the image onto the
corresponding elevation data provides a more informative view of the area’s
topography. The processis segmented into the following three sections:

e “Opening Image and Geometry Files’, in the following section

e “Initializing the IDL Display Objects’ on page 52

» “Displaying the Image and Geometric Surface Objects’ on page 53

Note
Data can be either regularly gridded (defined by a 2D array) or irregularly gridded
(defined by irregular X, y, z points). Both the image and elevation data used in this
example are regularly gridded. If you are dealing with irregularly gridded data, use
GRIDDATA to map the datato aregular grid.

Complete the following steps for a detailed description of the process.

Example Code
Seeelevation_object.pro inthe examples/doc/image subdirectory of the
IDL instalation directory for code that duplicates this example. Run the example
procedure by entering elevation_object at thelDL command prompt or view
thefilein an IDL Editor window by entering .EDIT elevation_object.pro.

Opening Image and Geometry Files

The following steps read in the satellite image and DEM files and display the
elevation data.

1. Select the satellite image:

imageFile = FILEPATH('elev_t.jpg', $
SUBDIRECTORY = ['examples', 'data'])

2. Import the JPEG file:
READ_JPEG, imageFile, image
3. Sdlect the DEM file:

demFile = FILEPATH('elevbin.dat',6 $
SUBDIRECTORY = ['examples', 'data'])

Mapping an Image onto Elevation Data Image Processing in IDL

javascript:doIDL("elevation_object")
javascript:doIDL(".edit elevation_object.pro")

Chapter 3: Mapping an Image onto Geometry 51

4. Define an array for the elevation data, open the file, read in the data and close
thefile:

dem = READ_BINARY (demFile, DATA_DIMS = [64, 64])

5. Enlarge the size of the elevation array for display purposes:
dem = CONGRID(dem, 128, 128, /INTERP)

6. To quickly visualize the elevation data before continuing on to the Object
Graphics section, initialize the display, create awindow and display the
elevation data using the SHADE_SURF command:

DEVICE, DECOMPOSED = 0
WINDOW, O, TITLE = 'Elevation Data'
SHADE_SURF, dem

: Elevation Data

Figure 3-1: Visual Display of the Elevation Data

After reading in the satellite image and DEM data, continue with the next section to
create the objects necessary to map the satellite image onto the elevation surface.

Image Processing in IDL Mapping an Image onto Elevation Data

52 Chapter 3: Mapping an Image onto Geometry

Initializing the IDL Display Objects

After reading in the image and surface data in the previous steps, you will need to
create objects containing the data. When creating an IDL Object Graphics display, it
is necessary to create awindow object (oWindow), aview object (oView) and a model
object (oModel). These display objects, shown in the conceptual representation in the
following figure, will contain a geometric surface object (the DEM data) and an
image object (the satellite image). These user-defined objects are instances of
existing IDL object classes and provide access to the properties and methods
associated with each object class.

 g—©0Window - an IDLgrWindow object

oView - an IDLgrView object

oModel - an IDLgrModel object

\ oSurface - the geometric elevation object

olmage - the satellite image object

Figure 3-2: Conceptualization of Object Graphics Display Example

Note
The XOBJVIEW utility (described in “Mapping an Image Object onto a Sphere”
(Chapter 4, Object Programming)) automatically creates window and view objects.

Complete the following steps to initialize the necessary IDL objects.

1. Initialize the window, view and model display objects. For detailed syntax,
arguments and keywords available with each object initialization, see
IDLgrWindow::Init, IDLgrView::Init and IDLgrModel::Init. The following
three lines use the basic syntax oNewObject = OBJ_NEW('Class_Name')
to create these objects:

oWindow = OBJ_NEW('IDLgrWindow', RETAIN = 2, COLOR_MODEL = 0)
oView = OBJ_NEW ('IDLgrView')
oModel = OBJ_NEW ('IDLgrModel"')

Mapping an Image onto Elevation Data Image Processing in IDL

Chapter 3: Mapping an Image onto Geometry 53

2. Assign the elevation surface data, dem, to an IDLgrSurface object. The

IDLgrSurface:Init keyword, sTYLE = 2, drawsthe elevation datausing a
filled line style:

oSurface = OBJ_NEW('IDLgrSurface', dem, STYLE = 2)

3. Assign the satellite image to a user-defined | DLgrl mage object using
IDLgrImage::Init:

oImage = OBJ_NEW('IDLgrImage', image, INTERLEAVE = 0, $
/INTERPOLATE)

INTERLEAVE = 0 indicatesthat the satelliteimageis organized using pixel
interleaving, and therefore has the dimensions (3, m, n). The INTERPOLATE
keyword forces bilinear interpolation instead of using the default nearest-
neighbor interpolation method.

Displaying the Image and Geometric Surface Objects

This section displays the objects created in the previous steps. The image and surface

objectswill first be displayed in an IDL Object Graphics window and then with the
interactive XOBJVIEW dtility.

1. Center the elevation surface object in the display window. The default object
graphics coordinate system is[-1,—1], [1,1]. To center the object in the
window, position the lower left corner of the surface data at [-0.5,—0.5, —0.5]
for the x, y and zdimensions:

oSurface -> GETPROPERTY, XRANGE = xXr, YRANGE = yr, $
ZRANGE = zr

xs = NORM_COORD (xr)
xs[0] = xs[0] - 0.5
vs = NORM_COORD (yr)
ys[0] = ys[0] - 0.5
zs = NORM_COORD(zr)
zs[0] = zs[0] - 0.5
oSurface -> SETPROPERTY, XCOORD_CONV = xs, $
YCOORD_CONV = ys, ZCOORD = zs

2. Map the satellite image onto the geometric elevation surface using the
IDLgrSurface::Init TEXTURE_MAP keyword:

oSurface -> SetProperty, TEXTURE_MAP = oImage, $
COLOR = [255, 255, 255]

For clearest display of the texture map, set COLOR = [255, 255, 255]. If the
image does not have dimensions that are exact powers of 2, IDL resamplesthe
image into alarger size that has dimensions which are the next powers of two

Image Processing in IDL Mapping an Image onto Elevation Data

54

Note

Chapter 3: Mapping an Image onto Geometry

greater than the original dimensions. This resampling may cause unwanted
sampling artifacts. In this example, the image does have dimensions that are
exact powers of two, so no resampling occurs.

If your texture does not have dimensions that are exact powers of 2 and you
do not want to introduce resampling artifacts, you can pad the texture with
unused data to a power of two and tell IDL to map only a subset of the
texture onto the surface.

For example, if your imageis 40 by 40, create a 64 by 64 image and fill part
of it with the image data:

textureImage = BYTARR(64, 64, /NOZERO)
textureImage([0:39, 0:39] = image ; image is 40 by 40
oImage = OBJ_NEW('IDLgrImage', texturelmage)

Then, construct texture coordinates that map the active part of the textureto a
surface (oSurface):

textureCoords = [[1, [1, [1, [11]
oSurface -> SetProperty, TEXTURE_COORD = textureCoords

The surface object in IDL 5.6 is has been enhanced to automatically perform
the above calculation. In the above example, just use the image data (the 40
by 40 array) to create the image texture and do not supply texture
coordinates. IDL computes the appropriate texture coordinates to correctly
use the 40 by 40 image.

Note

Some graphic devices have alimit for the maximum texture size. If your
textureis larger than the maximum size, IDL scalesit down into dimensions
that work on the device. Thisrescaling may introduce resampling artifacts
and loss of detail in the texture. To avoid this, usethe TEXTURE_HIGHRES
keyword to tell IDL to draw the surface in smaller pieces that can be texture
mapped without loss of detail.

3. Add the surface object, covered by the satellite image, to the model object.

Then add the model to the view object:

oModel -> Add, oSurface
oView -> Add, oModel

Mapping an Image onto Elevation Data Image Processing in IDL

Chapter 3: Mapping an Image onto Geometry 55

4. Rotate the model for better display in the object window. Without rotating the
model, the surface is displayed at a 90° elevation angle, containing no depth
information. The following lines rotate the model 90° away from the viewer
along the x-axis and 30° clockwise along the y-axis and the x-axis:

oModel -> ROTATE, [1, 0, 0], -90
oModel -> ROTATE, [0, 1, 0], 30
oModel -> ROTATE, [1, 0, 0], 30

5. Display theresult in the Object Graphics window:

oWindow -> Draw, oView

Figure 3-3: Image Mapped onto a Surface in an Object Graphics Window

6. Display theresultsusing XOBJVIEW, setting the scaLe = 1 (instead of the
default value of /SQRT3) to increase the size of the initial display:
XOBJVIEW, oModel, /BLOCK, SCALE = 1

This resultsin the following display.

Image Processing in IDL Mapping an Image onto Elevation Data

56 Chapter 3: Mapping an Image onto Geometry

&l Xobjview M= E
File Edit View

(W] O] J] |

Figure 3-4: Displaying the Image Mapped onto the Surface in XOBJVIEW

After displaying the model, you can rotate it by clicking in the application
window and dragging your mouse. Select the magnify button, then click near
the middle of the image. Drag your mouse away from the center of the display
to magnify the image or toward the center of the display to shrink the image.
Select the left-most button on the XOBJVIEW toolbar to reset the display.

7. Destroy unneeded object references after closing the display windows:
OBJ_DESTROY, [oView, oImagel]

The oModel and oSurface objects are automatically destroyed when oView is
destroyed.

For an example of mapping an image onto aregular surface using both Direct and
Object Graphics displays, see “Mapping an Image onto a Sphere” on page 57.

Mapping an Image onto Elevation Data Image Processing in IDL

Chapter 3: Mapping an Image onto Geometry 57

Mapping an Image onto a Sphere

The following example maps an image containing a color representation of world
elevation onto a sphere using both Direct and Object Graphics displays. The example
is broken down into two sections:

e “Mapping an Image onto a Sphere Using Direct Graphics’ below

e “Mapping an Image Object onto a Sphere” (Chapter 4, Object Programming)
Mapping an Image onto a Sphere Using Direct
Graphics

Complete the following steps for a detailed description of the process.

Example Code
Seemaponsphere_direct.pro inthe examples/doc/image subdirectory of
the IDL installation directory for code that duplicates this example. Run the
example procedure by entering maponsphere at the IDL command prompt or
view thefileinan IDL Editor window by entering . EDIT maponsphere.pro.

1. Select thefile containing the world elevation image. Define the array, read in
the data and close the file:

file = FILEPATH('worldelv.dat',6 $
SUBDIRECTORY = ['examples', 'data'l)
image = READ_BINARY (file, DATA_DIMS = [360, 3601])

2. Prepare the display device to display a PseudoColor image:
DEVICE, DECOMPOSED = 0

3. Loadacolor tableand using TVLCT, set thefinal index value of the red, green
and blue bands to 255 (white). Setting these index values to white provides for
the creation of awhite window background in a later step.

LOADCT, 33
TVLCT, 255,255,255, !D.TABLE_SIZE - 1

(For comparison, TvLCT, 0, 0, 0, !D.TABLE_SIZE+1 would designate
ablack window background.)

4. Create awindow and display the image containing the world elevation data:

WINDOW, 0, XSIZE = 360, YSIZE = 360
TVSCL, image

Image Processing in IDL Mapping an Image onto a Sphere

javascript:doIDL("maponsphere")
javascript:doIDL(".edit maponsphere.pro")

58 Chapter 3: Mapping an Image onto Geometry

Thisimage, shown in the following figure, will be mapped onto the sphere.

Figure 3-5: World Elevation Image

5. Use MESH_OBJto create a sphere onto which the image will be mapped. The
following line specifies avalue of 4, indicating a spherical surface type:

MESH_OBJ, 4, vertices, polygons, REPLICATE(0.25, 360, 360), $
/CLOSED

The vertices and polygons variables are the lists that contain the mesh vertices
and mesh indices of the sphere. REPLICATE generates a 360 by 360 array,
each element of which will contain the value 0.25. Using REPLICATE in the
Arrayl argument of MESH_OBJ specifies that the vertices variableisto
consist of 360 by 360 vertices, each positioned at a constant radius of 0.25
from the center of the sphere.

6. Create awindow and define the 3D view. Use SCALE3 to designate
transformation and scaling parameters for 3D viewing. The AX and AZ
keywords specify the rotation, in degrees about the x and z axes:

WINDOW, 1, XSIZE 512, YSIZE = 512
-0.

SCALE3, XRANGE = [25,0.25], YRANGE = [-0.25,0.25], S
ZRANGE = [-0.25,0.25], AX = 0, AZ = -90

Mapping an Image onto a Sphere Image Processing in IDL

Chapter 3: Mapping an Image onto Geometry 59

7. Set thelight source to control the shading used by the POLY SHADE function.
Use SET_SHADING to modify the light source, moving it from the default
position of [0,0,1] with rays paralel to the z-axisto alight source position of
[-0.5, 0.5, 2.0]:

SET_SHADING, LIGHT = [-0.5, 0.5, 2.0]

8. Set the system background color to the default color index, defining a white
window background:

!P.BACKGROUND = !P.COLOR

9. UseTVSCL to display the world elevation image mapped onto the sphere.
POLY SHADE referencesthe sphere created with the MESH_OBJroutine, sets
SHADES = image to map the image onto the sphere and uses the image
transformation defined by the T3D transformation matrix:

TVSCL, POLYSHADE (vertices, polygons, SHADES = image, /T3D)

The specified view of the image mapped onto the sphereis displayed in a
Direct Graphics window as shown in the following figure.

Figure 3-6: Direct Graphics Display of an Image Mapped onto a Sphere

10. After displaying the image, restore the system’s default background color:

!'P.BACKGROUND = 0

Image Processing in IDL Mapping an Image onto a Sphere

60 Chapter 3: Mapping an Image onto Geometry

Note
To create a Object Graphics display featuring a sphere that can be interactively
rotated and resized, compl ete the steps contained in the section, “Mapping an Image
Object onto a Sphere” (Chapter 4, Object Programming).

Mapping an Image onto a Sphere Image Processing in IDL

Chapter 4

Working with Masks
and Image Statistics

This chapter describes the following topics:

Overview of Masks and Image Statistics. .. 62 Locating Pixel Valuesinanimage 73
Maskinglmages...................... 64 Calculating Image Statistics 77
Clippinglmages.coovv... 69

Image Processing in IDL 61

62 Chapter 4: Working with Masks and Image Statistics

Overview of Masks and Image Statistics

Mathematical operations used with imagesinclude logic (conditional) operations and
statistics. Logic operations are used to make masks to apply threshold levelsto clip
the pixel values of an image, and to locate pixel values. These operations help to
segment features in an image, after which statistics can be derived to provide ameans
of comparison.

Masks are used to isolate specific features. A mask is a binary image, made by using
relational operators. A binary mask is multiplied by the original image to omit
specific areas. For more information, see “Masking Images’ on page 64.

Threshold levels can be applied to an image to clip the pixel valuesto afloor or a
ceiling. Clipping enhances specific features, and is applied through minimum and
maximum operators. After the resulting images are byte-scal ed, the specific features
remain while the other areas become part of the background. For more information,
see “ Clipping Images’ on page 69.

Locating pixel valuesis another way to segment specific features. Mathematical
expressions are used to determine the location of pixelswith particular values within
the two-dimensional array representing the image. For more information, see
“Locating Pixel Valuesin an Image” on page 73.

When specific features have been segmented, image statistics (such as total, mean,
standard deviation, and variance) can be derived to quantify and compare them. For
more information, see “Calculating Image Statistics’ on page 77.

Note
In this book, Direct Graphics examples are provided by default. Object Graphics

examples are provided in cases where significantly different methods are required.

Overview of Masks and Image Statistics Image Processing in IDL

Chapter 4: Working with Masks and Image Statistics 63

The following list introduces image math operations and associated IDL math
operators and routines covered in this chapter.

Task Operator(s) and Routine(s) Description
“Masking Relational Operators Make masks and
Images’ on Mathematical Operators apply them to
page 64. images.

“Clipping Minimum and Maximum Operators | Clipthe pixel values

Images’ on Mathematical Operators of an image to

page 69. highlight specific
features.

“Locating Pixel | WHERE L ocate specific

Valuesin an Mathematical Operators pixel values within

Image” on an image.

page 73.

“Calculating Mathematical Operators Calculate the sum,

Image IMAGE_STATISTICS mean, standard

Statistics” on deviation, and

page 77 variance of the pixel
values within an
image.

Table 4-1: Image Math Tasks and Related Image Math Operators and

Note

Routines

This chapter uses data filesfrom the TDI, examples/data and
examples/demo/demodata directories. Two files, data. txt and index. txt,
contain descriptions of the files, including array sizes.

Image Processing in IDL

Overview of Masks and Image Statistics

64 Chapter 4: Working with Masks and Image Statistics

Masking Images

Masking (also known as thresholding) is used to isolate features within an image
above, below, or equal to a specified pixel value. The value (known as the threshold
level) determines how masking occurs. In IDL, masking is performed with the
relational operators. IDL's relational operators are shown in the following table.

Operator Description
EQ Equal to
NE Not equal to
GE Greater than or equal to
GT Greater than
LE Less than or equal to
LT Lessthan

Table 4-2: IDLs Relational Operators

For example, if you have an image variable and you want to mask it to include only
the pixel values equaling 125, the resulting mask variable is created with the
following IDL statement.

mask = image EQ 125

The mask level is applied to every element in the image array, which resultsin a
binary image.

Note
You can also provide both upper and lower bounds to masks by using the bitwise
operators; AND, NOT, OR, and XOR. See Bitwise Operators in the Application
Programming for more information on these operators.

The following example uses masks derived from the image contained in the
worldelv.dat file, whichisinthe examples/data directory. Masks are derived
to extract the oceans and land. These masks are applied back to the image to show
only on the oceans or the land. Masks are applied by multiplying them with the
original image. Complete the following steps for a detailed description of the process.

Masking Images Image Processing in IDL

Chapter 4: Working with Masks and Image Statistics 65

Example Code
Seemaskingimages.pro inthe examples/doc/image subdirectory of the IDL
installation directory for code that duplicates this example. Run the example
procedure by entering maskingimages atthelDL command prompt or view the
fileinan IDL Editor window by entering . EDIT maskingimages.pro.

1. Determinethe path to thefile:

file = FILEPATH('worldelv.dat',6 $
SUBDIRECTORY = ['examples', 'data'l)

2. Initialize the image size parameter:

imageSize = [360, 360]
3. Import the image from thefile:

image = READ_BINARY (file, DATA_DIMS = imageSize)
4. Initialize the display:

DEVICE, DECOMPOSED = 0
LOADCT, 38

5. Create awindow and display the image:

WINDOW, 0, XSIZE = imageSize[0], YSIZE = imageSizel[l], $
TITLE = 'World Elevation'
TV, image

Image Processing in IDL Masking Images

javascript:doIDL("maskingimages")
javascript:doIDL(".edit maskingimages.pro")

66 Chapter 4: Working with Masks and Image Statistics

The following figure shows the original image, which represents the elevation
levels of the world.

Figure 4-1: World Elevation Image

6. Make amask of the oceans:
oceanMask = image LT 125

7. Multiply the ocean mask by the original image:
maskedImage = image*oceanMask

8. Create another window and display the mask and the results of the
multiplication:
WINDOW, 1, XSIZE = 2*imageSize[0], YSIZE = imageSize[l], $
TITLE = 'Oceans Mask (left) and Resulting Image (right)'

TVSCL, oceanMask, 0
TV, maskedImage, 1

Masking Images Image Processing in IDL

Chapter 4: Working with Masks and Image Statistics 67

The following figure shows the mask of the world’s oceans and the results of
applying it to the original image.

Figure 4-2: Oceans Mask (left) and the Resulting Image (right)

9. Makeamask of theland:
landMask = image GE 125

10. Multiply the land mask by the original image:
maskedImage = image*landMask

11. Create another window and display the mask and the results of the
multiplication:
WINDOW, 2, XSIZE = 2*imageSize[0], YSIZE = imageSize[l], $
TITLE = 'Land Mask (left) and Resulting Image (right)'

TVSCL, landMask, O
TV, maskedImage, 1

Image Processing in IDL Masking Images

68 Chapter 4: Working with Masks and Image Statistics

The following figure shows the mask of the land masses of the world and the
results of applying it to the original image.

Figure 4-3: Land Mask (left) and the Resulting Image (right)

Masking Images Image Processing in IDL

Chapter 4: Working with Masks and Image Statistics 69
Clipping Images

Clipping is used to enhance features within an image. You provide athreshold level
to determine how the clipping occurs. The values above (or below) the threshold
level remain the same while the other values are set equal to the level.

InIDL, clipping is performed with the minimum and maximum operators. IDL’s
minimum and maximum operators are shown in the following table.

Operator Description
< Less than or equal to
> Greater than or equal to

Table 4-3: IDL's Minimum and Maximum Operators

The operators are used in an expression that contains an image array, the operator,
and then the threshold level. For example, if you have an image variable and you
want to scale it to include only the values greater than or equal to 125, the resulting
clippedimage variable is created with the following IDL statement.

clippedImage = image > 125

Thethreshold level is applied to every element in the image array. If the element
valueislessthan 125, it is set equal to 125. If the value is greater than or equal to 125,
it isleft unchanged.

Note
When clipping is combined with byte-scaling, thisis equivalent to performing a
stretch on an image. See “ Determining Intensity Values for Threshold and Stretch”
in Chapter 9 for more information.

The following exampl e shows how to threshold an image of Hurricane Gilbert, which
isinthehurric.dat fileinthe examples/data directory. Two clipped images
are created. One contains all data values greater than 125 and the other contains all
values less than 125. Since these clipped images are grayscal e images and do not use
the entire O to 255 range, they are displayed with the TV procedure and then scaled
with the TV SCL procedure, which scales the range of the image from 0 to 255.
Complete the following steps for a detailed description of the process.

Example Code
Seeclippingimages.pro inthe examples/doc/image subdirectory of the
IDL instalation directory for code that duplicates this example. Run the example

Image Processing in IDL Clipping Images

70 Chapter 4: Working with Masks and Image Statistics

procedure by entering clippingimages atthelDL command prompt or view the
filein an IDL Editor window by entering .EDIT clippingimages.pro.

1. Determine the path to the wor1dtmp.png file:

file = FILEPATH('hurric.dat', $
SUBDIRECTORY = ['examples', 'data'l)

2. Define the image size parameter:

imageSize = [440, 340]
3. Import the image from thefile:

image = READ_BINARY(file, DATA_DIMS = imageSize)
4. |Initialize the display:

DEVICE, DECOMPOSED = 0
LOADCT, O

5. Create awindow and display the image:

WINDOW, 0, XSIZE = imageSize[0], YSIZE = imageSize[l], $
TITLE = 'Hurricane Gilbert'
TV, image

The following figure shows the original image of Hurricane Gilbert.

Figure 4-4: Image of Hurricane Gilbert

6. Clip theimage to determine which pixel values are greater than 125:

topClippedImage = image > 125

Clipping Images Image Processing in IDL

javascript:doIDL("clippingimages")
javascript:doIDL(".edit clippingimages.pro")

Chapter 4: Working with Masks and Image Statistics 71

7. Create another window and display the clipped image with the TV (left) and
the TVSCL (right) procedures:

WINDOW, 1, XSIZE = 2*imageSize[0], YSIZE = imageSize[l], $
TITLE = 'Image Greater Than 125, TV (left) ' + $
'and TVSCL (right)'

TV, topClippedImage, 0

TVSCL, topClippedImage, 1

The following figure shows the resulting image of pixel values greater than
125 with the TV and TV SCL procedures.

Figure 4-5: Pixel Values Greater Than 125, TV (left) and TVSCL (right)

8. Clip theimage to determine which pixel values are less than a 125:
bottomClippedImage = image < 125

9. Create another window and display the clipped image with the TV and the
TVSCL procedures:

WINDOW, 1, XSIZE = 2*imageSize[0], YSIZE = imageSize[l], $
TITLE = 'Image Less Than 125, TV (left) ' + $
'and TVSCL (right)'

TV, bottomClippedImage, 0

TVSCL, bottomClippedImage, 1

Image Processing in IDL Clipping Images

72 Chapter 4: Working with Masks and Image Statistics

The following figure shows the resulting image of pixel values less than 125
withthe TV (left) and TV SCL (right) procedures.

S

Figure 4-6: Pixel Values Less Than 125, TV (left) and TVSCL (right)

Clipping Images Image Processing in IDL

Chapter 4: Working with Masks and Image Statistics 73

Locating Pixel Values in an Image

Locating pixel values within an image helps to segment features. You can use IDL's
WHERE function to determine where features characterized by specific values
appear within the image. The WHERE function returns a vector of one-dimensional
indices, locating where the specified values occur within theimage. The values are
specified with an expression input argument to the WHERE function. The expression
is defined with the relational operators, similar to how masking is performed. See
“Masking Images’ on page 64 for more information on relational operators.

Since the WHERE function only returns the one-dimensional indices, you must
derive the column and row locations with the following statements.

column = index MOD imageSize[O0]
row = index/imageSize[0]

where index is the result from the WHERE function and imageSize[0] is the width of
theimage.

The WHERE function returns one-dimensional indicesto allow you to easily use
these results as subscripts within the original image array or another array. This
ability allows you to combine values from one image with another image. The
following example combines specific values from the image within the
worldelv.dat filewith theimage within theworldtmp.png file. The
worldelv.dat fileisinthe examples/data directory and theworldtmp.png file
isinthe examples/demo/demodata directory. First, the temperature data is shown
in the oceans and the elevation data is shown on the land. Then, the elevation datais
shown in the oceans and the temperature data is shown on the land. Complete the
following steps for a detailed description of the process.

Example Code
See combiningimages.pro inthe examples/doc/image subdirectory of the
IDL installation directory for code that duplicates this example. Run the example
procedure by entering combiningimages at the DL command prompt or view
thefilein an IDL Editor window by entering . EDIT combiningimages.pro.

1. Determinethe path to thefile:

file = FILEPATH('worldelv.dat', $
SUBDIRECTORY = ['examples', 'data'l)

2. Initialize the image size parameter:
imageSize = [360, 360]

3. Import the elevation image from the file:

Image Processing in IDL Locating Pixel Values in an Image

javascript:doIDL("combiningimages")
javascript:doIDL(".edit combiningimages.pro")

74 Chapter 4: Working with Masks and Image Statistics

elvIimage = READ_BINARY(file, DATA_ DIMS = imageSize)
4. Initialize the display:

DEVICE, DECOMPOSED = 0
LOADCT, 38

5. Create awindow and display the elevation image:

WINDOW, 0, XSIZE = 2*imageSize[0], YSIZE = imageSize[l], $
TITLE = 'World Elevation (left) and Temperature (right)'
TV, elvImage, O

6. Determine the path to the other file:

file = FILEPATH('worldtmp.png', $
SUBDIRECTORY = ['examples', 'demo', 'demodata'l])

7. Import the temperature image:
tmpImage = READ_PNG(file)

8. Display the temperature image:
TV, tmpImage, 1

The following figure shows the original world elevation and temperature
images.

Figure 4-7: World Elevation (left) and Temperature (right)

9. Determine where the oceans are located within the elevation image:

Locating Pixel Values in an Image Image Processing in IDL

Chapter 4: Working with Masks and Image Statistics 75

ocean = WHERE (elvImage LT 125)
10. Set the temperature image as the background:
image = tmpImage

11. Replace values from the temperature image with the values from the elevation
image only where the ocean pixels are located:

image[ocean] = elvImage[ocean]
12. Create another window and display the resulting temperature over land image:

WINDOW, 1, XSIZE = 2*imageSize[0], YSIZE = imageSize[l], $
TITLE = 'Temperature Over Land (left) ' +
'and Over Oceans (right)'

TV, image, 0

13. Determine where the land is located within the elevation image:
land = WHERE (elvImage GE 125)

14. Set the temperature image as the background:
image = tmpImage

15. Replace values from the temperature image with the values from the elevation
image only where the land pixels are located:

image[land] = elvImage[land]
16. Display the resulting temperature over oceans image:

TV, image, 1

Image Processing in IDL Locating Pixel Values in an Image

76 Chapter 4: Working with Masks and Image Statistics

The following figure shows two possible image combinations using the world
elevation and temperature images.

Figure 4-8: Temperature Over Land (left) and Over Oceans (right)

Tip
You could aso construct the same image using masks and adding them together.
For example, to create the second image (temperature over oceans), you could have
done the following:

mask = elvImage GE 125
image = (tmpImage* (1 - mask)) + (elvImage*mask)

For large images, using masks may be faster than using the WHERE routine.

Locating Pixel Values in an Image Image Processing in IDL

Chapter 4: Working with Masks and Image Statistics 77

Calculating Image Statistics

The statistical properties of an image provide useful information, such as the total,
mean, standard deviation, and variance of the pixel values. IDL's
IMAGE_STATISTICS procedure can be used to calculate these statistical properties.
The MOMENT, N_ELEMENTS, TOTAL, MAX, MEAN, MIN, STDDEV, and
VARIANCE routines can also be used to calculate individual statistics, but most of
these values are already provided by the IMAGE_STATISTICS procedure.

The following example shows how to use the IMAGE_STATISTICS procedure to
calculate the statistical properties of an image. First, amask is used to subtract the
convection of the earth’s core from the convection image contained in the
convec.dat file, which isin the examples/data directory. The resulting
difference represents the convection of just the earth’s mantle. The
IMAGE_STATISTICS procedure is applied to this difference image, and the
resulting values are displayed in the Output Log. Then, amask is derived for the non-
zero values of the differenceimage, and the IMAGE_STATISTICS procedure is used
again, this time with the mask applied through the MASK keyword. The resulting
statistics can than be compared. The color table associated with this example iswhite
for zero values and dark red for 255 values. Complete the following steps for a
detailed description of the process.

Example Code
Seecalculatingstatistics.pro inthe examples/doc/image subdirectory
of the IDL installation directory for code that duplicates this example. Run the
example procedure by entering calculatingstatistics atthelDL command
prompt or view thefilein an IDL Editor window by entering . EDIT
calculatingstatistics.pro.

1. Determinethe path to thefile:

file = FILEPATH('convec.dat',6 $
SUBDIRECTORY = ['examples', 'data'l)

2. Initialize the image size parameter.

imageSize = [248, 248]
3. Import the image from thefile:

image = READ_BINARY (file, DATA_DIMS = imageSize)
4. Initialize the display:

DEVICE, DECOMPOSED = 0
LOADCT, 27

Image Processing in IDL Calculating Image Statistics

javascript:doIDL("calculatingstatistics")
javascript:doIDL(".edit calculatingstatistics.pro")
javascript:doIDL(".edit calculatingstatistics.pro")

78 Chapter 4: Working with Masks and Image Statistics

5. Create awindow and display the image:

WINDOW, 0, XSIZE = imageSize[0], YSIZE = imageSizel[l], $
TITLE = 'Earth Mantle Convection'
TV, image

The following figure shows the original convection image.

Figure 4-9: Earth Mantle Convection

6. Make amask of the core and scaleiit to range from 0 to 255:
core = BYTSCL(image EQ 255)

7. Subtract the scaled mask from the origina image:
difference = image - core

8. Create another window and display the difference of the original image and the

scaled mask:
WINDOW, 2, XSIZE = imageSize[0], YSIZE = imageSizel[l], $
TITLE = 'Difference of Original & Core'

TV, difference

Calculating Image Statistics Image Processing in IDL

Chapter 4: Working with Masks and Image Statistics 79

The following figure shows the convection of just the earth’s mantle.

Figure 4-10: The Difference of the Original Image and the Core

9. Determinethe statistics of the difference image:

IMAGE_STATISTICS, difference, COUNT = pixelNumber, $
DATA_SUM = pixelTotal, MAXIMUM = pixelMax, $
MEAN = pixelMean, MINIMUM = pixelMin, $
STDDEV = pixelDeviation, $
SUM_OF_SQUARES = pixelSquareSum, $
VARIANCE = pixelVariance

10. Print out the resulting statistics:

PRINT, ''

PRINT, 'IMAGE STATISTICS:'

PRINT, 'Total Number of Pixels = ', pixelNumber

PRINT, 'Total of Pixel Values = ', pixelTotal

PRINT, 'Maximum Pixel Value = ', pixelMax

PRINT, 'Mean of Pixel Values = ', pixelMean

PRINT, 'Minimum Pixel Value = ', pixelMin

PRINT, 'Standard Deviation of Pixel Values = ', $
pixelDeviation

PRINT, 'Total of Squared Pixel Values = ', $
pixelSgquareSum

PRINT, 'Variance of Pixel Values = ', pixelVariance

IDL prints:

IMAGE STATISTICS:

Total Number of Pixels = 61504

Total of Pixel Values = 2.61691e+006
Maximum Pixel Value = 253.000

Mean of Pixel Values = 42.5486
Minimum Pixel Value = 0.000000

Image Processing in IDL Calculating Image Statistics

80 Chapter 4: Working with Masks and Image Statistics

Standard Deviation of Pixel Values = 48.7946
Total of Squared Pixel Values = 2.57779e+008
Variance of Pixel Values = 2380.91

11. Derive amask of the non-zero values of the image:
nonzeroMask = difference NE 0

12. Determine the statistics of the image with the mask applied:

IMAGE_STATISTICS, difference, COUNT = pixelNumber, $
DATA_SUM = pixelTotal, MASK = nonzeroMask, $
MAXIMUM = pixelMax, MEAN = pixelMean, $
MINIMUM = pixelMin, STDDEV = pixelDeviation, $
SUM_OF_SQUARES = pixelSquareSum, $
VARIANCE = pixelVariance

13. Print out the resulting statistics:

PRINT, ''

PRINT, 'MASKED IMAGE STATISTICS:'

PRINT, 'Total Number of Pixels = ', pixelNumber

PRINT, 'Total of Pixel Values = ', pixelTotal

PRINT, 'Maximum Pixel Value = ', pixelMax

PRINT, 'Mean of Pixel Values = ', pixelMean

PRINT, 'Minimum Pixel Value = ', pixelMin

PRINT, 'Standard Deviation of Pixel Values = ', $
pixelDeviation

PRINT, 'Total of Squared Pixel Values = ', $
pixelSgquareSum

PRINT, 'Variance of Pixel Values = ', pixelVariance

IDL prints:

MASKED IMAGE STATISTICS:

Total Number of Pixels = 36325

Total of Pixel Values = 2.61691e+006
Maximum Pixel Value = 253.000

Mean of Pixel Values = 72.0416

Minimum Pixel Value = 1.00000

Standard Deviation of Pixel Values = 43.6638
Total of Squared Pixel Values = 2.57779e+008
Variance of Pixel Values = 1906.53

The difference in the resulting statistics are because of the zero values, which
are a part of the calculations for the image before the mask is applied.

Calculating Image Statistics Image Processing in IDL

Chapter 5
Warping Images

This chapter describes the following topics:

Overview of WarpingImages 82 Warping Images Using Direct Graphics... 85
Creating Transparent Image Overlays 84

Image Processing in IDL 81

82 Chapter 5: Warping Images

Overview of Warping Images

In image processing, image warping is used primarily to correct optical distortions
introduced by camera lenses, or to register images acquired from either different
perspectives or different sensors. When correcting optical distortions, the original
image may be registered to aregular grid rather than to another image. In image
warping, corresponding control points (selected in the input and reference images)
control the geometry of the warping transformation. The arrays of control pointsfrom
the original input image, Xi and Yi, are stretched to conform to the control point
arrays Xo and Yo, designated in the reference image. Because these transformations
are frequently nonlinear, image warping is often known as rubber sheeting. For
general tips regarding control point selection see “Tips for Selecting Control Points”
on page 83.

Image warping in IDL is athree-step process. First, control points are selected
between two displayed images or between an image and a grid. Second, the resulting
arrays of control points, Xi, Yi, Xo, and Yo, are then input into one of IDL’s warping
routines. Third, the warped image resulting from the translation of the Xi, Yi pointsto
the Xo, Yo points, is displayed. It is often useful to display the warped image as a
transparency, overlaying the reference image. For more information on creating
transparencies with Direct and Object Graphics, see “ Creating Transparent Image
Overlays’ on page 84.

The following table introduces the tasks and routines covered in this chapter.

Task Routine Description
Creating aDirect | WSET Set the window focus and select control
GraphicsDisplay | cURSOR point coordinates.
of Image Warping _ _
See *Warping WARP_TRI :/_/arp trllzt | magei,I u5|t ng V\IIQRP_TRI S
Images Using riangulation and interpolation.
Direct Graphics’ | POLYWARP Create arrays of polynomial coefficients
on page 85. from the control point arrays before
using POLY _2D.
POLY_2D Warp the images using the polynomial
warping functions of POLY _2D.
XPALETTE Use XPALETTE to view acolor table.

Table 5-1: Image Warping Tasks and Routines

Overview of Warping Images Image Processing in IDL

Chapter 5: Warping Images

83
Task Routine Description

Creating an IDLgrPalette::Init Create a palette object.
Object Graphics - .
Display of Image XROI Sel gct control points using the XROI
Warping utility.
See “Warping WARP_TRI Warp the input image to the reference
Image Objects’ image using the triangulation and
(Chapter 4, Object interpolation functions of WARP_TRI.
Programming). SIZE Change the warped image into a RGB

BYTARR image containing an alpha channel to

enable transparency.
IDLgrImage::Init Initialize transparent image and base

image objects.

IDLgrWindow::Init
IDLgrView::Init
IDLgrModel::Init

Initialize the objects necessary for an
Object Graphics display.

Table 5-1:

Image Warping Tasks and Routines (Continued)

Tips for Selecting Control Points

Both examplesin this chapter use control points to define the image warping
transformation. To produce accurate results, use the following guidelines when
selecting corresponding control points:

» Select numerous control points. A warping transformation based on many
control points produces a more accurate result than one based on only a few

control points.

» Sdect control points near the edges of the image in addition to control points
near the center of the image.

» Sdlect ahigher density of control pointsin irregular or highly varying areas of

the image.

e Sdlect pointsin which you are confident. Including points with poor accuracy
may generate worse results then awarp mode with fewer points.

Image Processing in IDL

Overview of Warping Images

84 Chapter 5: Warping Images

Creating Transparent Image Overlays

It is possible to create and display atransparent image using either IDL Direct
Graphics or IDL Object Graphics. Creating a transparent image is useful in the
warping process when you want to overlay atransparency of the warped image onto
the reference image (the image in which Xo, Yo control points were selected). The
method used to create and display the transparent image depends on whether the
resulting image is being displayed with Direct Graphics or Object Graphics.

Displaying Image Transparencies Using Direct
Graphics

Creating atransparent overlay in Direct Graphics requires devising a mask to alter
the array of theimage that isto be displayed as atransparency. The mask retains only
the pixel values that will appear in the transparent overlay. The base image and the
transparent warped image can then be displayed as a blended image in a Direct
Graphics window.

With Direct Graphics displays, only asingle color table can be applied to the blended
imagein a display window. For an example of creating a blended image, combining a
warped image and a base image, see “ Warping Images Using Direct Graphics’ on
page 85.

Note
For precise control over the color tables associated with the referenceimage and the

warped image transparency, consider using Object Graphics.

Displaying Image Transparencies Using Object
Graphics
In Object Graphics, atransparent image object is created by adding an a pha channel
to theimage array. The aphachannel is used to define the level of transparency in an

image object. For an example, see “Defining Transparency in Image Objects’ and
“Warping Image Objects’ (Chapter 4, Object Programming).

Creating Transparent Image Overlays Image Processing in IDL

Chapter 5: Warping Images 85
Warping Images Using Direct Graphics

Image warping requires selection of corresponding control pointsin an input image
and either areference image or aregular grid. The input image is warped so that the
input image control points match the control points specified in the reference image.

Using Direct Graphics, the following example warps the input image, a Magnetic
Resonance Image (MRI) proton density scan of a human thoracic cavity, to the
reference image, a Computed Tomography (CT) bone scan of the same region.
Complete the following steps for a detailed description of the process.

Example Code
Seemriwarping_direct.prointheexamples/doc/image subdirectory of the
IDL installation directory for code that duplicates this example. Run the example
procedure by entering mriwarping at the IDL command prompt or view the file
inan IDL Editor window by entering .EDIT mriwarping.pro.

1. Select the MRI proton density image file:

mriFile= FILEPATH('pdthoraxl24.jpg', $
SUBDIRECTORY = ['examples', 'data'l)
2. Use READ_JPEG to read in the input image, which will be warped to the CT
bone scan image. Then prepare the display device, load agrayscale color table,
create awindow and display the image:

READ_JPEG, mriFile, mriImg
DEVICE, DECOMPOSED = 0

LOADCT, O
WINDOW, 0, XSIZE = 256, YSIZE = 256, $
TITLE = 'MRI Proton Density Input Image'

TV, mrilImg
3. Select the CT bone scan imagefile:

ctboneFile = FILEPATH('ctbonel57.jpg', $
SUBDIRECTORY = ['examples', 'data'])

4. Use READ_JPEG to read in the reference image and create a window:

READ_JPEG, ctboneFile, ctbonelImg
WINDOW, 2, XSIZE = 483, YSIZE = 410, S
TITLE = 'CT Bone Scan Reference Image'

5. Loadthe“Hue Sat Lightness 2" color table, making theimage's features easier
to distinguish. After displaying the image, return to the gray scale color table.

LOADCT, 20

Image Processing in IDL Warping Images Using Direct Graphics

javascript:doIDL("mriwarping")
javascript:doIDL(".edit mriwarping.pro")

86 Chapter 5: Warping Images

TV, ctbonelImg
LOADCT, O

Proceed with the following section to begin selecting control points.
Direct Graphics Example: Selecting Control Points

This section describes selecting corresponding control points in the two displayed
images. The array of control points (Xi, Yi) in the input image will be mapped to the
array of points (Xo, Yo) selected in the reference image. The following image shows
the points to be selected in the input image.

CP 4

(xi4, yi4)
cp 3 CP5
(i3, yi3) (xi5, yi5)
CP2 8l 4 CP6
(xi2, yi2) ——g - A== -1 (xi6, yi6)
CP1
xil, yil e
(i1, yi1) (xi7, yi7)

CP9 CP 8
(xi9, yi9) (xi8, yi8)

Figure 5-1: Control Points (CP) Selection in the Input Image

1. Set focuson the first image window:
WSET, O

2. Sdect thefirst control point using the CURSOR function. After entering the
following line, the cursor changes to a cross hair when positioned over the
image window. Position the cross hair so that it is on the first control point,
“CP 1", depicted by awhite circle in the lower-left corned of the previous

Warping Images Using Direct Graphics Image Processing in IDL

Chapter 5: Warping Images 87

figure, and click the left mouse button. The x, y coordinate values of the first
control point will be saved in the variables xi1, yi1l:

CURSOR, xil, yil, /DEVICE

Note
Thevaluesfor xil and yil are displayed in the IDL Workbench Variable
Watch window. If you are not running the IDL Workbench, you can type
PRINT, xil, yil to seethevalues.

Note
After entering the first line and selecting the first control point in the display
window, place your cursor in the IDL command line and press the Up Arrow
key. The last line entered is displayed and can be easily modified.

3. Continue selecting control points. After you enter each of the following lines,
select the appropriate control point in the input image as shown in the previous
figure:

CURSOR, xi2, yi2, /DEVICE
CURSOR, xi3, yi3, /DEVICE
CURSOR, xi4, yi4, /DEVICE
CURSOR, xib, yi5, /DEVICE
CURSOR, xi6, yi6, /DEVICE
CURSOR, xi7, yi7, /DEVICE
CURSOR, xi8, yi8, /DEVICE
CURSOR, x19, yi9, /DEVICE

4, Setthefocusonthewindow containing the reference image to prepare to select
corresponding control points:

WSET, 2

Note
The Xi and Yi vectors and the Xo and Yo vectors must be the same length,
meaning that you must select the same number of control pointsin the
reference image as you selected in the input image. The control points must
also be selected in the same order since the point Xi1, Yil will be warped to
Xol, Yol.

Image Processing in IDL Warping Images Using Direct Graphics

88

Chapter 5: Warping Images

The following figure displays the control pointsto be selected in the next step.

CP4a
{xo4, yod)
CP 3 CP5
(x03, yo3) - LR (x05, yob)
CP2 ._ j: - CP 86 .
(x02, yo2) p8 A e (x08B, yoB)
CPA1 CP7
xol, yol) — g & 44— (x07, yo7)
CP o CPs8
(x09, yo9) (x08, yo8)

Figure 5-2: Control Point (CP) Selection in the Reference Image

5. Select the control pointsin the reference image. These are the corresponding
points to which the input image control points will be warped. After entering
each line, select the appropriate control point as shown in the previous figure:

CURSOR, xo0l, yol,
CURSOR, x02, yo2,
CURSOR, x03, yo3,
CURSOR, xo04, yo4,
CURSOR, xob5, vyo5,
CURSOR, x06, yo6,
CURSOR, xo07, vyo7,
CURSOR, x08, yo8,
CURSOR, x09, yo9,

/DEVICE
/DEVICE
/DEVICE
/DEVICE
/DEVICE
/DEVICE
/DEVICE
/DEVICE
/DEVICE

6. Placethe control pointsinto vectors (one-dimensional arrays) required by IDL
warping routines. WARP_TRI and POLY WARP use the variables Xi, Yi and
Xo, Yo as containers for the control points selected in the original input and
reference images. Geometric transformations control the warping of the input

Warping Images Using Direct Graphics

Image Processing in IDL

Chapter 5: Warping Images 89

image (Xi, Yi) values to the reference image (Xo, Yo) values. Enter the
following lines to load the control point values into the one-dimensional

arrays:
Xi = [x11l, xi2, x13, xi4, xi5, xi6, xi7, xi8, x19]
Yi = [yil, yi2, yi3, vyi4, vyib5, vyi6, yi7, yi8, yi9]
Xo = [x0l, x02, x03, x04, x05, x06, x07, x08, x09]
Yo = [yol, yo2, yo3, yod4, yo5, yo6, yo7, yo8, yo9]

Example Code: Warping and Displaying a Transparent Image
Using Direct Graphics

This section uses the control points defined in the previous section to warp the
original MRI scan to the CT scan, using both of IDL’swarping routines, WARP_TRI
and POLY _2D. After outputting the warped image, it will be altered for display asa
transparency in Direct Graphics.

1. Warp theinput image, mrilmg, onto the reference image using WARP_TRI.
This function uses theirregular grid of the reference image, defined by Xo, Yo,
as abasisfor triangulation, defining the surfaces associated with (Xo, Yo, Xi)
and (Xo, Yo, Yi). Each pixel in theinput image is then transferred to the
appropriate position in the resulting output image as designated by
interpolation. Using the WARP_TRI syntax,

Result = WARP_TRI (Xo, Yo, Xi, Yi, Image, OUTPUT_SIZE=vector]
[, /QUINTIC] [, /EXTRAPOLATE])

set the OUTPUT _SIZE equal to the reference image dimensions since this
image forms the basis of the warped, output image. Use the EXTRAPOLATE
keyword to display the portions of the image which fall outside of the
boundary of the selected control points:

warpTriImg = WARP_TRI (Xo, Yo, Xi, Yi, mriImg, $
OUTPUT_SIZE=[483, 410], /EXTRAPOLATE)

Note
Images requiring more aggressive warp models may not have good results
outside of the extent of the control points when WARP_TRI is used with the
/EXTRAPOLATE keyword.

2. Create anew window and display the warped image:

WINDOW, 3, XSIZE = 483, YSIZE = 410, TITLE = 'WARP_TRI image'
TV, warpTrilImg

Image Processing in IDL Warping Images Using Direct Graphics

90 Chapter 5: Warping Images

You can see the how precisely the control points were selected by the amount
of distortion in the resulting warped image. The following figure showsllittle
distortion.

1 WARP_TRI image
—

Figure 5-3: Warped Image Produced with WARP_TRI

3. Use POLYWARP in conjunction with POLY _2D to create another warped
image for comparison with the WARP_TRI image. First use the POLY WARP
procedure to create arrays (p, g) containing the polynomial coefficients
required by the POLY _2D function:

POLYWARP, Xi, Yi, Xo, Yo, 1, p, g

4. Usingthep, q array values generated by POLY WARP, warp the original
image, mrilmg, onto the CT bone scan using the POLY _2D function syntax,

Result = POLY_2D(Array, P, QO [, Interp [, Dimx, Dimyl]]
[, CUBIC={-1 to 0}] [, MISSING=value])

Specify avalue of 1 for the ITnterp argument to use bilinear interpolation and
set pimx, Dimy egual to the reference image dimensions:

warpPolyImg = POLY_2D(mriImg, p, g, 1, 483, 410)
5. Create anew window and display the image created using POLY _2D:

WINDOW, 4, XSIZE = 483, YSIZE = 410, TITLE = 'Poly_2D image'
TV, warpPolyImg

Warping Images Using Direct Graphics Image Processing in IDL

Chapter 5: Warping Images 91

The following image shows little difference from the WARP_TRI image other
than more accurate placement in the display window.

i Poly_2D image

Figure 5-4: Warped Image Produced with POLY_2D

Direct Graphics displaysin IDL allow you to display a combination of images
in the same Direct Graphics window. The following steps display various
intensities of the warped image and the reference image in a Direct Graphics
window.

6. Usethe XPALETTE tool to view the color table applied to the bone scan
image by first entering:

XPALETTE

Inthe XPALETTE utility, display acolor table by selecting the Predefined
button. In the resulting XLOADCT dialog, scroll down and select Hue
Saturation Lightness 2. Click Done. Inthe XPALETTE utility, click
Redraw. Compare the bone scan image, displayed in window 2, to the
displayed color table. To mask out the less important background information,
select acolor close to that of the body color in the image.

Image Processing in IDL Warping Images Using Direct Graphics

92 Chapter 5: Warping Images

The following figure displays a portion of the XPALETTE utility with such a
selection.

55
. | I
By Index
Fow
7
: | I
Tolurn

Figure 5-5: Using XPALETTE to Identify Mask Values

7. Using the knowledge that the body color’s index number is 55, mask out the
lessimportant background information of the bone scan image by creating an
array containing only pixel values greater than 55. Multiply the mask by the
image to retain the color information and use BY TSCL to scale the resulting
array from 0 to 255:

ctboneMask = BYTSCL((ctboneImg GT 55) * ctbonelImg)

8. Display ablended image using the full intensity of the bone scan image and a
75% intensity of the warped image. The following statement displays the
pixelsin the bone scan with the full range of colorsin the color table while
using the lower 75% of the color table values for the warped image. After
adding the arrays, scale the results for display purposes.

blendImg = BYTSCL(ctboneMask + 0.75 * warpPolyImg)

9. Create awindow and display the result:

WINDOW, 5, XSIZE = 483, YSIZE = 410, TITLE = 'Blended Image'
TV, blendImg

Warping Images Using Direct Graphics Image Processing in IDL

Chapter 5: Warping Images 93

The clavicles and rib bones of the reference image are clearly displayed in the
following figure.

Figure 5-6: Direct Graphics Display of a Transparent Blended Image

While Direct Graphics supports displaying indexed images as transparent blended
images, you could also apply alphablending to RGB images that are output to a
TrueColor display. However, creating image transparencies which retain their color
information is more easily accomplished using Object Graphics. For an exampl e of
using Object Graphicsto display awarped image transparency over another image
see “Warping Image Objects” (Chapter 4, Object Programming).

Image Processing in IDL Warping Images Using Direct Graphics

94 Chapter 5: Warping Images

Warping Images Using Direct Graphics Image Processing in IDL

Chapter 6

Working with Regions
of Interest (ROISs)

This chapter describes creating and analyzing regions of interest (ROIs) and includes the following

topics:

Overview of WorkingwithROIs 96 GrowingaRegion 109
Defining Regions of Interest 99 Creating and Displaying an ROl Mask .. 114
Displaying ROI Objectsin a Direct Graphics Testing an ROI for Point Containment ... 118
Window 101 Crea[ing a Surface Mesh of an ROI Group 121
Programmatically Defining ROIs 105

Image Processing in IDL

95

96 Chapter 6: Working with Regions of Interest (ROIS)

Overview of Working with ROIs

A region of interest (ROI) is an area of an image defined for further analysis or
processing. There are severa ways to define ROIs. The XROI utility enables the
interactive definition of single or multiple regions from an image using the mouse.
Routines such as CONTOUR or REGION_GROW enabl e the programmatic
definition of ROIS. CONTOUR traces the outlines of thresholded ROIs while the
REGION_GROW routine expands an initial region to include all connected,
neighboring pixels that meet given conditions. Once an ROI is defined, it can be
displayed or undergo further analysis.

An ROI can be displayed using either Direct Graphics or Object Graphics. In Direct
Graphics, the DRAW_ROI routine quickly displays single or multiple ROI objects or
an ROI group. In Object Graphics, see IDLanROI and IDLgrROI in the IDL
Reference Guide for more information.

Note
When computing ROI geometry, there is a difference between aregion’s area when
it is displayed on a screen versus the region’s computed, geometric area. See
“Contrasting an ROI's Geometric Area and Mask Area’ on page 97 for details.

Multiple ROIs can also be defined from a multi-image data set and added to an
IDLanROIGroup object for triangulation into a 3D mesh. Alternatively, multiple
ROl s can be defined in a single image and added to a group object. ROl groups can
be displayed in a Direct Graphics window with DRAW_ROI or with the Object
Graphics XOBJVIEW dtility.

The following table introduces the tasks and routines covered in this chapter.

Task Routine(s)/Object(s) Description
“Defining Regions | XROI Create an ROI
of Interest” on interactively, prior to
page 99. analysis or display.
“Displaying ROI DRAW_ROI Display ROI objectsin a
Objectsin aDirect Direct Graphics window.
Graphics Window”
on page 101.

Table 6-1: Tasks and Routines Associated with Regions of Interest

Overview of Working with ROIs Image Processing in IDL

Chapter 6: Working with Regions of Interest (ROIs)

97

Task

Routine(s)/Object(s)

Description

“Programmeatically
Defining ROIS” on

CONTOUR
DRAW_ROI

Define ROIs using
CONTOUR and display

page 105. IDLanROI::ComputeM ask them using DRAW_ROI.
IMAGE_STATISTICS Return various statistics
IDLanROI::ComputeGeometry for each ROI.

“Growing a REGION_GROW Expand an original region
Region” on toinclude all connected,
page 109. neighboring pixels which

meet specified
constraints.
“Creating and IDLanROI::ComputeM ask Create a 2D mask of an

Displaying an ROI ROI, compute the area of
Mask” on the mask and display a
page 114. magnified view of the

image region.

“Testing an ROI for
Point Contai nment”
on page 118.

IDLanROI::ContainsPoints

Determine whether a
point lieswithin the
boundary of aregion.

“Creating a Surface
Mesh of an ROI
Group” on

page 121.

IDLanROIGroup::Add
IDLanROIGroup::ComputeM esh
XOBJWVIEW

Add ROIsto an ROI
group object, triangulate
a surface mesh and
display the group object
using XOBJVIEW.

Table 6-1: Tasks and Routines Associated with Regions of Interest (Continued)

Contrasting an ROI's Geometric Area and Mask Area

When working with ROIs, many users note a discrepancy between the computation
of an ROI's geometric area and the computation of the mask area (the number of
pixels an ROI contains when displayed). Intuition might lead one to believe that the
results should be the same. However, as the following figure shows, the computed
geometric area (the result of a pure mathematical calculation) differs from the
displayed (masked) area, which is subject to the artifacts of digital sampling.

Image Processing in IDL

Overview of Working with ROIs

98

Chapter 6: Working with Regions of Interest (ROIS)

When displaying aregion (or computing the area of its mask), each vertex of the
region is mapped to a corresponding discrete pixel location. No matter where the
vertex falls within the pixel, the entire pixel location is set since the region is being
displayed. For example, for any vertex coordinate (x, y) where:

1.5<x<2.5and 1.5 <y < 2.5

the vertex coordinateis assigned avalue of (2, 2). Therefore, the area of the displayed
(masked) region istypically larger than the computed geometric area. While the
geometric area of a2 by 2 region equals 4 as expected, the mask area of the identical
region equals 9 due to the centering of the pixels when the region is displayed.

‘{2-4) (4,4) 2-43 2-4)
4%
yd o4
/ //
(22) T (.2.2 (1.2}

Geometric Area
2 x 2region =4 e | Screen Display of Same Region
.{0.0) (0,0 3 x 3 filled region =9

Figure 6-1: A Region’s Undisplayed Area (left) vs. Displayed Area (right)

The ROI Information dialog of the XROI utility reports the region’s “Area’”
(geometric area) and “# Pixels’ (mask area). To programmatically compute an ROI’s
geometric area, use IDLanROI::ComputeGeometry. To programmatically compute
the area of adisplayed region, use IDLanROI::ComputeMask in conjunction with
IMAGE_STATISTICS. See “Programmatically Defining ROIS” on page 105 for
examples of these computations.

Overview of Working with ROIs Image Processing in IDL

Chapter 6: Working with Regions of Interest (ROIs) 99

Defining Regions of Interest

The XROI utility allows you to quickly load an image file, define single or multiple
ROls, and obtain geometry and statistical data about the ROIs. While regions can be
defined programmatically (see “Programmatically Defining ROIS” on page 105 and

“Growing aRegion” on page 109), the XROI utility enables the interactive creation

and selection of an ROI using the mouse.

For a quick introduction to creating ROIs using XROI, complete the following steps:
1. Open XROI by typing the following at the command line:
XROI

2. Load an image using the image file selection dialog. Select earth. jpg from
the examples/demo/demodata directory. Click Open.Theimage appearsin
the XROI utility.

See “Using XROI” under “XROI” (IDL Reference Guide) for details on the
interface elements.Flip the image vertically to display it right-side-up by
clicking the Flip button.

3. Sedlect the Draw Freehand button and use the mouse to interactively define an
ROI encompassing the African continent. Your image should be similar to the
following figure.

&1 ROI o [=] 3
File Edit

‘Elﬂ Byl x|o|o| v | @l ROI Information H=

Fiegions of Interest:

Arear 2819.5000
Perimeter: 238.21336
Pirels: 2967
Minimum: — MNAA
M awimum: A&
Mean: WA
Std. Dev.: MNAA

B Mame:|Fegion 1 Delete ROI
Cloze | Histogram |

=t

Figure 6-2: Defining an ROI of Africa and Showing the ROI Information Dialog

Image Processing in IDL Defining Regions of Interest

100 Chapter 6: Working with Regions of Interest (ROIS)

4. After releasing the mouse button, the ROI Information dialog appears,
displaying ROI statistics. You can now define another ROI, save the defined
ROl asa . sav fileor exit the XROI utility.

Using XROI syntax allows you to programmatically load an image and specify a
variable for REGIONS _OUT that will contain the ROI data. The region data can then
undergo further analysis and processing. The following code lines open the
previously opened image for ROI creation and selection and specify to save the
region data as oROI Africa.

; Select the file, read the data and load the image’s color table.
imgFile = FILEPATH('earth.jpg', $
SUBDIRECTORY = |['examples', 'demo',6 'demodata'l])
image = READ_IMAGE (imgFile, R, G, B)
TVLCT, R, G, B

; Display the image using XROI. Specify a variable for REGIONS_OUT
; to save the ROI information.
XROI, image, R, G, B, REGIONS_OUT = oROIAfrica

The ROI information, oROI Africa, can then be analyzed using |DLanROI methods or
the REGION_GROW procedure. The ROI data can also be displayed using
DRAW_ROI or as an IDLgrROI object. Such tasks are covered in the following
sections.

Defining Regions of Interest Image Processing in IDL

Chapter 6: Working with Regions of Interest (ROIS) 101

Displaying ROI Objects in a Direct Graphics
Window

The DRAW_ROI procedure displays single or multiple IDLanROI objectsin a Direct
Graphics window. The procedure allows you to layer the ROIs over the original
image and specify the line style and color with which each region is drawn. The
DRAW_ROI procedure also provides a means of easily displaying interior regions or
“holes” within a defined ROI.

The following example uses the XROI utility to define two regions, afemur and tibia
from a DICOM image of aknee, and draws them in a Direct Graphics window.
Complete the following steps for a detailed description of the process.

Example Code
See drawroiex.pro inthe examples/doc/image subdirectory of the IDL
installation directory for code that duplicates this example. Run the example
procedure by entering drawroiex at the IDL command prompt or view thefilein
an IDL Editor window by entering .EDIT drawroiex.pro.

1. Preparethedisplay device and load a grayscale color table:

DEVICE, DECOMPOSED = 0, RETAIN = 2
LOADCT, O
2. Select and open the image file using the READ_DICOM function and get its
size:
kneeImg = READ_DICOM(FILEPATH('mr_knee.dcm',6 $

SUBDIRECTORY = ['examples',6 'data']l))
dims = SIZE(kneeImg, /DIMENSIONS)

3. Rotate the image 180 degrees so that the femur will be at the top of the display:
kneeImg = ROTATE (BYTSCL (kneeImg), 2)

4. Openthefilein the XROI utility to create an ROI containing the femur. The
following line includes the ROI_GEOMETRY and STATISTICS keywords so
that specific ROI information can be retained for printing in alater step:

XROI, kneeImg, REGIONS_OUT = femurROIout, $
ROI_GEOMETRY = femurGeom, $
STATISTICS = femurStats, /BLOCK

Select the Draw Polygon button from the XROI utility toolbar, shown in the
following figure. Position the crosshairs anywhere along the border of the
femur and click the left mouse button to begin defining the ROI. Move your

Image Processing in IDL Displaying ROI Objects in a Direct Graphics Window

javascript:doIDL("drawroiex")
javascript:doIDL(".edit drawroiex.pro")

102

Chapter 6: Working with Regions of Interest (ROIS)

mouse to another point along the border and left-click again. Repeat the
process until you have defined the outline for the ROI. To close the region,
double-click the left mouse button. Your display should appear similar to the
following figure. Close the XROI utility to store the ROI information in the
variable, femur ROl out.

FREREEEER T Draw Polygon

Figure 6-3: Defining the Femur ROI

Create an ROI containing thetibia, using the following XROI statement:

XROI, kneeImg, REGIONS_OUT = tibiaROIout, $
ROI_GEOMETRY = tibiaGeom, $
STATISTICS = tibiaStats, /BLOCK

Select the Draw Polygon button from the XROI utility toolbar. Position the
crosshairs symbol anywhere along the border of the tibia and draw the region
shown in the following figure, repeating the same steps as those used to define
the femur ROI. Close the XROI utility to store the ROI information in the
specified variables.

Figure 6-4: Defining the Tibia ROI

Displaying ROI Objects in a Direct Graphics Window Image Processing in IDL

Chapter 6: Working with Regions of Interest (ROIs) 103

6. Create aDirect Graphics display containing the original image:

WINDOW, 0, XSIZE = dims[0], YSIZE = dims[1]
TVSCL, kneeImg

7. Load the 16-level color table to display the regions using different colors. Use
DRAW_ROI statements to specify how each ROI is drawn:

LOADCT, 12

DRAW_ROI, femurROIout, /LINE_FILL, COLOR = 80, $
SPACING = 0.1, ORIENTATION = 315, /DEVICE

DRAW_ROI, tibiaROIout, /LINE_FILL, COLOR = 42, $
SPACING = 0.1, ORIENTATION = 30, /DEVICE

In the previous statements, the ORIENTATION keyword specifies the degree
of rotation of the lines used to fill the drawn regions. The DEVICE keyword
indicates that the vertices of the regions are defined in terms of the device
coordinate system where the origin (0,0) isin the lower-left corner of the
display.

Your results should appear similar to the following figure, with the ROI
objects layered over the original image.

Figure 6-5: Defined Region Objects Overlaid onto Original Image

Image Processing in IDL Displaying ROI Objects in a Direct Graphics Window

104 Chapter 6: Working with Regions of Interest (ROIS)

8. Print the statistics for the femur and tibia ROIs. This information has been
stored in the femur Geom, femur Stat, tibiaGeom and tibiaSat variable
structures, defined in the previous XROI statements. Use the following linesto

print geometrical and statistical datafor each ROI:

PRINT, 'FEMUR Region Geometry and Statistics'

PRINT, 'area =', femurGeom.area, $
'perimeter = ', femurGeom.perimeter,
'population =', femurStats.count

PRINT, ' '

PRINT, 'TIBIA Region Geometry and Statistics'

PRINT, 'area =', tibiaGeom.area, $
'perimeter = ', tibiaGeom.perimeter,
'population =', tibiaStats.count

Note

Notice the difference between the “area’ value, indicating the region’s
geometric area, and the “population” value, indicating the number of pixels
covered by the region when it is displayed. Thisdifferenceis expected and is
explained in the section, “ Contrasting an ROI’s Geometric Area and Mask

Area’ on page 97.

9. Clean up object references that are not destroyed by the window manager

when you close the Object Graphics displays:

OBJ_DESTROY, [femurROIout, tibiaROIout]

Displaying ROI Objects in a Direct Graphics Window

Image Processing in IDL

Chapter 6: Working with Regions of Interest (ROIs) 105

Programmatically Defining ROIs

While most examplesin this chapter use interactive methods to define ROl s, aregion
can also be defined programmatically. The following example uses thresholding and
the CONTOUR function to programmatically trace region outlines. After the path
information of the regions has been input into ROI objects, the DRAW_ROI
procedure displays each region. The example then computes and returns the
geometric area and perimeter of each region aswell as the number of pixels making
up each region when it is displayed. Complete the following steps for a detailed
description of the process.

Example Code
Seeprogramdefineroi.pro inthe examples/doc/image subdirectory of the
IDL installation directory for code that duplicates this example. Run the example
procedure by entering programdefineroi at the IDL command prompt or view
thefilein an IDL Editor window by entering . EDIT programdefineroi.pro.

1. Preparethedisplay device and load a color table:

DEVICE, DECOMPOSED = 0, RETAIN = 2
LOADCT, O

2. Select and open the image file and get its dimensions:

img = READ_PNG(FILEPATH('mineral.png', $
SUBDIRECTORY = ['examples', 'data'l))
dims = SIZE(img, /DIMENSIONS)

3. Create awindow and display the original image:

WINDOW, 0, XSIZE = dims[0], YSIZE = dims[1]
TVSCL, img

Image Processing in IDL Programmatically Defining ROIs

javascript:doIDL("programdefineroi")
javascript:doIDL(".edit programdefineroi.pro")

106 Chapter 6: Working with Regions of Interest (ROIS)

The following figure displays the initial image.

Figure 6-6: Initial Image

4. Create amask that identifies the darkest pixels, whose values are less than 50:

threshImg = (img LT 50)

Note

See “Determining Intensity Values for Threshold and Stretch” on page 240
for a useful strategy to use when determining threshold values.

5. Create and apply a 3x3 square structuring element, using the erosion and
dilation operators to close gaps in the thresholded image:

strucElem = REPLICATE(1, 3, 3)
threshImg = ERODE (DILATE (TEMPORARY (threshImg), $
strucElem), strucElem)

6. Usethe CONTOUR procedure to extract the boundaries of the thresholded
regions. Store the path information and coordinates of the contours in the
variables pathinfo and pathXY as follows:

CONTOUR, threshImg, LEVEL = 1, S

XMARGIN = [0, 0], YMARGIN = [0, 0], $

/NOERASE, PATH_INFO = pathInfo, PATH_XY = pathXy, $

XSTYLE = 5, YSTYLE = 5, /PATH_DATA_COORDS
The PATH_INFO variable contains the path information for the contours.
When used in conjunction with the PATH_XY variable, containing the
coordinates of the contours, the CONTOUR procedure records the outline of
closed regions. See CONTOUR in the IDL Reference Guide for full details.

7. Display the original image in a second window and |load a discrete color table:

WINDOW, 2, XSIZE = dims[0], YSIZE = dims[1]

Programmatically Defining ROIs Image Processing in IDL

Chapter 6: Working with Regions of Interest (ROIs) 107

TVSCL, img
LOADCT, 12

8. Input the data of each of the contour paths into IDLanROI objects:

FOR I = 0, (N_ELEMENTS (PathInfo) - 1) DO BEGIN & $

Note
The & after BEGIN and the $ allow you to use the FOR/DO loop at the IDL

command line. These & and $ symbols are not required when the FOR/DO
loop in placed in an IDL program as shown in ProgrambefineROI.pro in
the examples/doc/image subdirectory of the IDL installation directory.

9. Initialize oROI with the contour information of the current region:

line = [LINDGEN(PathInfo(I).N), 0] & $

OROI = OBJ_NEW('IDLanROI', $
(pathXY (*, pathInfo(I).OFFSET + line)) [0, *], S
(pathXY (*, pathInfo(I).OFFSET + line))[1, *1) & $

10. Draw the ROI object in a Direct Graphics window using DRAW_ROI:
DRAW_ROI, oROI, COLOR = 80 & $

11. Usethe IDLanROI::ComputeM ask function in conjunction with
IMAGE_STATISTICS to obtain maskArea, the number of pixels covered by
the region when it is displayed. The variable, maskResult, isinput as the value
of MASK in the second statement in order to return the maskArea:

maskResult = oROI -> ComputeMask($
DIMENSIONS = [dims[0], dims[1]]) & $

IMAGE_STATISTICS, img, MASK = maskResult, $
COUNT = maskArea & $

12. Usethe IDLanROI::ComputeGeometry function to return the geometric area
and perimeter of each region. In the following example, SPATIAL_SCALE
defines that each pixel represents 1.2 by 1.2 millimeters:

ROIStats = oROI -> ComputeGeometry($
AREA = geomArea, PERIMETER = perimeter, $
SPATIAL_SCALE = [1.2, 1.2, 1.0]) & $

Note
Thevalue for SPATIAL _SCALE in the previous statement is used only as
an example. The actua spatial scale valueistypically known based upon
equipment used to gather the data.

Image Processing in IDL Programmatically Defining ROIs

108 Chapter 6: Working with Regions of Interest (ROIS)

13. Print the statistics for each ROI when it is displayed and wait 3 seconds before
proceeding to the display and analysis of the next region:

PRINT, ' ' & S

PRINT, 'Region''s mask area = Y, 8
FIX (maskArea), ' pixels' & $

PRINT, 'Region''s geometric area = ', S
FIX (geomArea), ' mm' & $

PRINT, 'Region''s perimeter = ', S
FIX (perimeter),' mm' & $

WAIT, 3

14. Remove each unneeded object reference after displaying the region:
OBJ_DESTROY, oROI & $
15. End the FOR loop:
ENDFOR

The outlines of the ROIs recorded by the CONTOUR function have been
translated into ROI objects and displayed using DRAW_ROI. Each region’s
“mask area,” (computed using IDLanROI::ComputeMask in conjunction with
IMAGE_STATISTICS) shows the number of pixels covered by the region
when it is displayed on the screen.

Each region’s geometric area and perimeter, (computed using
IDLanROI::ComputeGeometry’s SPATIAL_SCALE keyword) resultsin the
following geometric area and perimeter measurements in millimeters.

Region's magk area = 2600 pixelz Region's magk area = 1669 pixelz
Region's geametric area = 3520 mm Region's geametric area = 2262 mm
Region's perimeter = 416 mm Region's perimeter = 285 mm

Region's mask area = 4193 piels
Region's geometric area = 5754 mm
Region's perimeter = BEE mm

Region's mask area = 26 pixels
Region's geometric area = 23 mm
Region's perimeter = 23 mm

Figure 6-7: Display of Programmatically Defined Regions

Programmatically Defining ROIs Image Processing in IDL

Chapter 6: Working with Regions of Interest (ROIs) 109
Growing a Region

The REGION_GROW function is an analysis routine that allows you to identify a
complicated region without having to manually draw intricate boundaries. This
function expands a given region based upon the constraints imposed by either a
threshold range (minimum and maximum pixel values) or by a multiplier of the
standard deviation of the original region. REGION_GROW expands an original
region to include al connected neighboring pixelsthat fall within the specified limits.

Thefollowing exampleinteractively definesan initial region within across-section of
ahuman skull. The initial region is then expanded using both methods of region
expansion, thresholding and standard deviation multiplication. Complete the
following steps for a detailed description of the process.

Example Code
See regiongrowex.pro inthe examples/doc/image subdirectory of the IDL
installation directory for code that duplicates this example. Run the example
procedure by entering regiongrowex at the IDL command prompt or view thefile
in an IDL Editor window by entering .EDIT regiongrowex.pro.

1. Preparethedisplay device and load a grayscale color table:

DEVICE, DECOMPOSED = 0, RETAIN = 2
LOADCT, O

2. Sdect thefile, read in the data and get the image dimensions:

file = FILEPATH('mdl1107g8a.jpg', $
SUBDIRECTORY = ['examples', 'data'])

READ_JPEG, file, img, /GRAYSCALE

dims = SIZE(img, /DIMENSIONS)

3. Doublethe size of the image for display purposes and compute the new
dimensions:

img = REBIN(BYTSCL(img), dims[0]*2, dims[1]*2)
dims = 2*dims

4. Create awindow and display the original image:

WINDOW, 0, XSIZE = dims[0], YSIZE = dims[1], $
TITLE = 'Click on Image to Select Point of ROI'
TVSCL, img

Image Processing in IDL Growing a Region

javascript:doIDL("regiongrowex")
javascript:doIDL(".edit regiongrowex.pro")

110 Chapter 6: Working with Regions of Interest (ROIS)

The following figure shows the initial image.

Figure 6-8: Original Image Showing Region to be Selected

5. Definethe original region pixels. Using the CURSOR function, select the
origina region by positioning your cursor over the image and clicking on the
region indicated in the previous figure by the “+” symbol. Then create a 10 by
10 square ROI, named roipixels, at the selected x, y, coordinates:

CURSOR, xi, yi, /DEVICE

x = LINDGEN(10*10) MOD 10 + xi
y = LINDGEN(10*10) / 10 + yi
roiPixels = x + y * dims[0]

Note
A region can also be defined and grown using the XROI utility. Seethe XROI

procedure in the IDL Reference Guide for more information.

6. Delete the window after selecting the point:
WDELETE, O
7. Set thetopmost color table entry to red:

topClr = !D.TABLE_SIZE - 1
TVLCT, 255, 0, 0, topClr

Growing a Region Image Processing in IDL

Chapter 6: Working with Regions of Interest (ROIS) 111

8. Display theinitial region using the previously defined color:

regionPts = BYTSCL(img, TOP = (topClr - 1))

regionPts[roiPixels] = topClr

WINDOW, 0, XSIZE = dims[0], YSIZE = dims[1l], $
TITLE = 'Original Region'

TV, regionPts

The following figure shows the initial ROI that will be input and expanded
with the REGION_GROW function.

Original
Region

Figure 6-9: Square ROI at Selected Coordinates

9. Using the REGION_GROW function syntax,

Result = REGION_GROW (Array, ROIPixels [, /ALL_NEIGHBORS]
[, STDDEV_MULTIPLIER=value | THRESHOLD=[min, max]])

input the original region, roipixels, and expand the region to include al
connected pixels which fall within the specified THRESHOLD range:

REGION_GROW (img, roiPixels, $
[215,255])

newROIPixels
THRESHOLD

Note
If neither the THRESHOLD nor the STDDEV_MULTIPLIER keywords are

specified, REGION_GROW automatically applies THRESHOLD, using the
minimum and maximum pixels values occurring within the original region.

Image Processing in IDL Growing a Region

112

Chapter 6: Working with Regions of Interest (ROIS)

10. Show the results of growing the original region using threshold values:

Note
An error message such asAttempt to subscript REGIONIMG with
NEWROIPIXELS is out of range indicatesthat the pixel valueswithin
the defined region fall outside of the minimum and maximum THRESHOL D
values. Either define aregion containing pixel values that occur within the
threshold range or ater the minimum and maximum val ues.

regionImg = BYTSCL(img, TOP = (topClr-1))

regionImg [newROIPixels] = topClr

WINDOW, 2, XSIZE = dims[0], YSIZE = dims[1l], $
TITLE = 'THRESHOLD Grown Region'

TV, regionImg

The left-hand image in the following figure shows that the region has been
expanded to clearly identify the optic nerves. Now expand the original region
by specifying a standard deviation multiplier value as described in the
following step.

11. Expand the original region using avalue of 7 for STDDEV_MULTIPLIER:

stddevPixels = REGION_GROW(img, roiPixels, $
STDDEV_MULTIPLIER = 7)

12. Create a new window and show the resulting ROI:

Growing a Region

WINDOW, 3, XSIZE = dims[0], YSIZE = dims[1l], $

TITLE = "STDDEV_MULTIPLIER Grown Region"
regionImg2 = BYTSCL(img, TOP = (topClr - 1))
regionImg2 [stddevPixels] = topClr

TV, regionImg?2

Image Processing in IDL

Chapter 6: Working with Regions of Interest (ROIs) 113

The following figure displays the results of growing the original region using
thresholding (left) and standard deviation multiplication (right).

Figure 6-10: Regions Expanded Using REGION_GROW

Note
Your results for the right-hand image may differ. Results of growing aregion using
a standard deviation multiplier will vary according to the exact mean and deviation
of the pixel values within the original region.

Image Processing in IDL Growing a Region

114 Chapter 6: Working with Regions of Interest (ROIS)

Creating and Displaying an ROl Mask

The IDLanROI::ComputeM ask function method defines a 2D mask of aregion
object, returning an array in which all pixelsthat lie outside of the region have avalue
of 0. The mask can then be used to extract the portion of the original image that lies
within the ROI. The following example defines an ROI, computes a mask, appliesthe
mask to retain only the portion of the image defined by the ROI, and produces a
magnified view of the ROI. Complete the following steps for adetailed description of
the process.

Example Code
See scalemask_object.pro inthe examples/doc/image subdirectory of the
IDL installation directory for code that duplicates this example. Run the example
procedure by entering scalemask_object at the IDL command prompt or view
thefilein an IDL Editor window by entering .EDIT scalemask_object.pro.

1. Select thefile, read in the data and get the image dimensions:

file = FILEPATH('md5290fcl.jpg', S
SUBDIRECTORY = ['examples', 'data'l)

READ_JPEG, file, img, /GRAYSCALE

dims = SIZE(img, /DIMENSIONS)

2. Passtheimageto XROI and use the Draw Polygon tool to define the region:

XROI, img, REGIONS_OUT = ROIout, /BLOCK

Creating and Displaying an ROl Mask Image Processing in IDL

javascript:doIDL("scalemask_object")
javascript:doIDL(".edit scalemask_object.pro")

Chapter 6: Working with Regions of Interest (ROIs) 115

L] i] Bjn] x|9| o] 4| #f— Draw Polygon

e

Figure 6-11: ROI Definition in XROI

Close the XROI window to save the region object datain the variable, ROl out.
Assign the ROI datato the arrays, x and y:

ROIout -> GetProperty, DATA = ROIdata
x = ROIdatalO0, *]
v ROIdatall, *]

Set the properties of the ROI:

ROIout -> SetProperty, COLOR = [255,255,255], THICK = 2

Initialize an IDLgrlmage object containing the original image data:

oImg = OBJ_NEW('IDLgrImage', img,$
DIMENSIONS = dims)

Create awindow in which to display the image and the ROI:

oWindow = OBJ_NEW ('IDLgrWindow', DIMENSIONS = dims, $
RETAIN = 2, TITLE = 'Selected ROI')

Create the view plane and initialize the view:

viewRect = [0, 0, dims[0], dims[1]]
oView = OBJ_NEW('IDLgrView', VIEWPLANE_RECT = viewRect)

Image Processing in IDL Creating and Displaying an ROl Mask

116 Chapter 6: Working with Regions of Interest (ROIS)

8. Initialize amodel object and add the image and ROI to the model. Add the
model to the view and draw the view in the window to display the ROI
overlaid onto the original image:

oModel = OBJ_NEW ('IDLgrModel"')
oModel -> Add, oImg

oModel -> Add, ROIout

oView -> Add, oModel

oWindow -> Draw, oView

9. UsethelDLanROI::ComputeMask function to create a 2D mask of the region.
Pixelsthat fall outside of the ROI will be assigned a vaue of 0:

maskResult = ROIout -> ComputeMask (DIMENSIONS = dims)

10. Usethe IMAGE_STATISTICS procedure to compute the area of the mask,
inputting maskResult as the MASK value. Print count to view the number of
pixels occurring within the masked region:

IMAGE_STATISTICS, img, MASK = MaskResult, COUNT = count
PRINT, 'area of mask = ', count,' pixels'

Note
The COUNT keyword to IMAGE_STATISTICS returns the number of pixels
covered by the ROI when it is displayed, the same value as that shown in the
“# Pixels’ field of XROI's ROI Information dialog.

11. From the ROI mask, create a binary mask, consisting of only zeros and ones.
Multiply the binary mask times the original image to retain only the portion of
the image that was defined in the original ROI:

mask = (maskResult GT 0)
maskImg = img * mask

12. Using the minimum and maximum values of the ROI array, create a cropped
array, croplmg, and get its dimensions:

cropImg = maskImg[min(x):max(x), min(y): max(y)]
cropDims = SIZE(cropImg, /DIMENSIONS)

13. Initialize an image object with the cropped region data:

oMaskImg = OBJ_NEW('IDLgrImage', cropImg, $
DIMENSIONS = dims)

14. Using the cropped region dimensions, create an offset window. Multiply the x
and y dimensions times the value by which you wish to magnify the ROI:

oMaskWindow = OBJ_NEW ('IDLgrWindow', $
DIMENSIONS = 2 * cropDims, RETAIN = 2, $

Creating and Displaying an ROl Mask Image Processing in IDL

Chapter 6: Working with Regions of Interest (ROIs) 117

TITLE = 'Magnified ROI', LOCATION = dims)
15. Create the display objects and display the cropped and magnified ROI:

oMaskView = OBJ_NEW('IDLgrView',6 VIEWPLANE RECT = viewRect)
oMaskModel = OBJ_NEW ('IDLgrModel')

oMaskModel -> Add, oMaskImg

oMaskView -> Add, oMaskModel

OMaskWindow -> Draw, oMaskView

Theoriginal and the magnified view of the ROI are shown in the following
figure.

Figure 6-12: Original and Magnified View of the ROI

16. Clean up object references that are not destroyed by the window manager
when you close the Object Graphics displays:

OBJ_DESTROY, [oView, oMaskView, ROIout]

Image Processing in IDL Creating and Displaying an ROl Mask

118 Chapter 6: Working with Regions of Interest (ROIS)

Testing an ROI for Point Containment

The IDLanROI::ContainsPoints function method determines whether a point having
given coordinates lies inside, outside, on the boundary of, or on the vertex of a
designated ROI. The following example alows the creation of an ROl within an
image of the world using XROI. After exiting XROI, apoint is selected and tested to
determine its relationship to the ROI. The example then creates textual and graphical
displays of the results. Complete the following steps for a detailed description of the
process.

Example Code
See containmenttest.pro inthe examples/doc/image subdirectory of the
IDL installation directory for code that duplicates this example. Run the example
procedure by entering containmenttest at the|DL command prompt or view the
filein an IDL Editor window by entering .EDIT containmenttest.pro.

1. Preparethedisplay device:
DEVICE, DECOMPOSED = 0, RETAIN = 2
2. Select and open the image file and get its dimensions:

img = READ_PNG(FILEPATH('avhrr.png', $
SUBDIRECTORY = ['examples', 'data'l), R, G, B)
dims = SIZE(img, /DIMENSIONS)

3. Openthefilein the XROI utility to create an ROI:

XROI, img, REGIONS_OUT = ROIout, R, G, B, /BLOCK, $
TITLE = 'Create ROI and Close Window'

After creating any region using the tool of your choice, close the XROI utility
to save the ROI object datain the variable, ROl out.

4. Load theimage color table and display the image in a new window:

TVLCT, R, G, B

WINDOW, 0, XSIZE = dims[0], YSIZE = dims[1], $
TITLE = 'Left-Click Anywhere in Image'

TV, img

5. The CURSOR function allows you to select and define the coordinates of a
point. After entering the following line, position your cursor anywherein the
image window and click the left mouse button to select a point:

CURSOR, xi, yi, /DEVICE

6. Delete the window after selecting the point:

Testing an ROI for Point Containment Image Processing in IDL

javascript:doIDL("containmenttest")
javascript:doIDL(".edit containmenttest.pro")

Chapter 6: Working with Regions of Interest (ROIs) 119

WDELETE, O

7. Using the coordinates returned by the CURSOR function, determine the
placement of the point in relation to the ROI object using
IDLanROI::ContainsPoints:

ptTest = ROIout -> ContainsPoints(xi,yi)

8. Thevalue of ptTest, returned by the previous statement, ranges from 0 to 3.
Create the following vector of string data where the index value of the string
element relates to value of ptTest. Print the actual and textual value of ptTest:

containResults = [$
'Point lies outside ROI', $
'Point lies inside ROI', S
'Point lies on the edge of the ROI', $
'Point lies on vertex of the ROI']

PRINT, 'Result =',6 ptTest, ': ', containResults|[ptTest]

9. Complete the following stepsto create avisual display of the ROI and the
point that you have defined. First, create a 7 by 7 ROI indicating the point:

xX LINDGEN(7*7) MOD 7 + xi
y = LINDGEN(7*7) / 7 + vi
point = x + y * dims[0]

10. Define the color with which the ROI and point are drawn:

maxClr = !D.TABLE_SIZE - 1
TVLCT, 255, 255, 255, maxClr

11. Draw the point within the original image and display it:

regionPt = img

regionPt[point] = maxClr

WINDOW, 0, XSIZE = dims[0], YSIZE = dims[1l], $
TITLE='Containment Test Results'

TV, regionPt

12. Draw the ROI over the image using DRAW_ROI:

DRAW_ROI, ROIout, COLOR = maxClr, /LINE_FILL, $
THICK = 2, LINESTYLE = 0, ORIENTATION = 315, /DEVICE

13. Clean up object references that are not destroyed by the window manager:

OBJ_DESTROY, ROIout

Image Processing in IDL Testing an ROI for Point Containment

120 Chapter 6: Working with Regions of Interest (ROIS)

The following figure displays a region covering South America and a point
within the African continent. Your results will depend upon the ROI and point
you have defined when running this program.

Figure 6-13: Detail of Point Containment Test

Testing an ROI for Point Containment Image Processing in IDL

Chapter 6: Working with Regions of Interest (ROIS) 121

Creating a Surface Mesh of an ROI Group

An IDLanROIGroup contains multiple ROIs. The ROI group consists of either
several ROIs defined in asingle image, or a stack of ROIs, each of which has been
defined from a separate dlice of amulti-image data set. An ROI group can be
translated into a surface mesh, amask, or tested for point containment. The following
example defines ROIs from a data set containing 57 MRI images of a human head.
After all ROIs have been defined with the utility and each region has been added to
the group, IDLanROI::ComputeMesh triangul ates a surface mesh. The resulting
vertices and connectivity array are used to create a polygon object that is displayed
using XOBJVIEW. Complete the following steps for a detailed description of the
process.

Example Code
See grouproimesh.pro inthe examples/doc/image subdirectory of the IDL
installation directory for code that duplicates this example. Run the example
procedure by entering grouproimesh at the IDL command prompt or view thefile
inan IDL Editor window by entering . EDIT grouproimesh.pro.

1. Preparethedisplay device and load a color table to more easily distinguish
image features:

DEVICE, DECOMPOSED = 0, RETAIN = 2
LOADCT, 5
TVLCT, R, G, B, /GET

2. Sedlect and open thefile:

file = FILEPATH('head.dat', SUBDIRECTORY =
['examples', 'data'l])
img = READ_BINARY (file, DATA_DIMS = [80,100,571)

3. Resizethe array for display purposes and to compensate for the sampling rate
of the scan dlices:

img = CONGRID(img, 200, 225, 57)
4. Initialize an IDLanROIGroup object to which individual ROIswill be added:

OoROIGroup = OBJ_NEW ('IDLgrROIGroup')

Image Processing in IDL Creating a Surface Mesh of an ROI Group

javascript:doIDL("grouproimesh")
javascript:doIDL(".edit grouproimesh.pro")

122 Chapter 6: Working with Regions of Interest (ROIS)

5. UseaFOR loop to define an ROI within every fifth dice of data. Add each
ROI to the group:

FOR i=0, 54, 5 DO BEGIN & $
XROI, img[*, *,i]l, R, G, B, REGIONS_OUT = oROI, $

/BLOCK, ROI_SELECT_COLOR = [255, 255, 255] & $
OROI -> GetProperty, DATA = roiData & $
roiDatal[2, *] = 2.2*1 & $

oRoi -> ReplaceData, roiData & $
ORoiGroup -> Add, oRoi & $
ENDFOR

Note
The & after BEGIN and the $ allow you to use the FOR/DO loop at the IDL
command line. These & and $ symbols are not required when the FOR/DO
loop in placed in an IDL program as shown in GroupROIMesh.pro inthe
examples/doc/image subdirectory of the IDL installation directory.

The following image shows samples of the ROIs to be defined.

Figure 6-14: ROIs to be Defined

Creating a Surface Mesh of an ROI Group Image Processing in IDL

Chapter 6: Working with Regions of Interest (ROIs) 123

To limit the time needed compl ete this exercise, the previous FOR statement
arranges to display every fifth slice of datafor ROI selection. To obtain higher
quality results, consider selecting an ROI in every other slice of data.

6. Compute the mesh for the ROI group using IDLanROIGroup::ComputeM esh:
result = oROIGroup -> ComputeMesh (verts, conn)
Note

The ComputeMesh function will fail if the ROIs contain interior regions
(holes), are self-intersecting or are of a TY PE other than the default, closed

polygon.

7. Prepareto display the mesh, scaling and translating the array for display in
XOBJIVIEW:

nImg = 57

xymax = 200.0

zmax = float (nImg)

oModel = OBJ_NEW ('IDLgrModel')

oModel -> Scale, 1./xymax,l./xymax, 1.0/zmax
oModel -> Translate, -0.5, -0.5, -0.5

oModel -> Rotate, [1,0,0], -90

oModel -> Rotate, [0, 1, 0], 30

oModel -> Rotate, [1,0,0], 30

8. Create an IDLgrPolygon object using the results of ComputeM esh:

oPoly = OBJ_NEW('IDLgrPolygon', verts, POLYGON = conn, $
COLOR = [128, 128, 128], SHADING = 1)

9. Add the polygon to the model and display the polygon object in XOBJVIEW:

oModel -> Add, oPoly
XOBJVIEW, oModel, /BLOCK

10. Clean up object references that are not destroyed by the window manager
when you close the Object Graphics displays:

OBJ_DESTROY, [0ROI, oROIGroup, oPoly, oModel]

Image Processing in IDL Creating a Surface Mesh of an ROI Group

124 Chapter 6: Working with Regions of Interest (ROIS)

The following figure displays the mesh created by defining an ROI in every
other dice of datainstead of from every fifth slice as described in this example.
Therefore, your results will likely vary.

Figure 6-15: Result of Creating a Mesh from a Group of ROIs

Creating a Surface Mesh of an ROI Group Image Processing in IDL

Chapter 7
Transforming Between
Domains

This chapter describes the following topics:

Overview of Transforming Between Image Transforming Between Domainswith Wavelets
Domains..............coiiiiiin.n. 126 144

Transforming Between Domainswith FFT ... Transforming to and from the Hough and

128 RadonDomains 157

Image Processing in IDL 125

126 Chapter 7: Transforming Between Domains

Overview of Transforming Between Image
Domains

Some processes performed on an image in the spatial domain may be very
computationally expensive. These same processes may be significantly easier to
perform after transforming an image to a different domain. These transformations are
the basis for many image filters, applied to remove noise, to sharpen, or extract
features. Domain transformations also provide additional information about an image
and can offer compression benefits.

The most common representation of a pixel’s value and location is spatial, where it
appearsin three dimensions (x, y, and z). Pixel value and location in this spaceis

usually referred to by column (x), row (y), and value (2), and is known as the spatial
domain. However, apixel’s value and | ocation can be represented in other domains.

In the frequency or Fourier domain, the value and location are represented by
sinusoidal relationshipsthat depend upon the frequency of a pixel occurring within an
image. In thisdomain, pixel location is represented by its x- and y-frequencies and its
value is represented by an amplitude. Images can be transformed into the frequency
domain to determine which pixels contain more important information and whether
repeating patterns occur. See “ Transforming Between Domains with FFT” on

page 128 for more information on the frequency domain.

In the time-frequency or wavelet domain, the value and location are represented by
sinusoidal relationships that only partially transform the image into the frequency
domain. Like the transformation to the full frequency domain, the transformation to
the time-frequency domain helps to determine the important information in an image.
See “ Transforming Between Domains with Wavelets’ on page 144 for more
information on the time-frequency domain.

In the Hough domain, pixels are presented by sinusoidal lines. Since straight lines
within an image are transformed into the Hough domain as intersecting sinusoidal
lines, these intersections can be used to determine if and where straight lines occur
within an image. See “ Transforming to and from the Hough and Radon Domains’ on
page 157 for more information on the Hough domain.

In the Radon domain, aline of pixels occurring in animage is represented by asingle
point. Thistransformation is useful for detecting specific features and image
compression. Since transforming images to and from the Hough and Radon domains
use similar methods, the Radon image representation is described in the same section
as the Hough representation. See “ Transforming to and from the Hough and Radon
Domains’ on page 157 for more information on the Radon domain.

Overview of Transforming Between Image Domains Image Processing in IDL

Chapter 7: Transforming Between Domains

Note

127

In this book, Direct Graphics examples are provided by default. Object Graphics
examples are provided in cases where significantly different methods are required.

The following list introduces the image domain transformations and associated IDL
image transformation routines covered in this chapter.

Task Routine(s) Description
“Transforming FFT Transform images into the frequency
Between Domains domain and back into the spatial
with FFT” on page 128 domain with the Fast Fourier

Transform. Then show how to use
this process to remove noise from an
image.
“Transforming WTN Transform images into the time-
Between Domains frequency domain and back into the
with Wavelets’ on spatial domain with the Wavel et
page 144 transform. Then show how to use this
process to remove noise from an
image.
“Transformingtoand | HOUGH Transform imagesinto the Hough and
from the Hough and RADON the Radon domains and back into the
Radon Domains’ on spatial domain with the Hough and
page 157 Radon transforms. Then show how to

use these processes to detect straight
lines and improve contrast within an
image.

Table 7-1: Image Transformation Tasks and Related Routines

Note

This chapter uses data filesfrom the TDI. examples/data directory. Two files,
data.txt and index. txt, contain descriptions of the files, including array sizes.

Image Processing in IDL

Overview of Transforming Between Image Domains

128 Chapter 7: Transforming Between Domains

Transforming Between Domains with FFT

The Fast Fourier Transform (FFT) is used in numerica analysis to transform an
image between spatial and frequency domains. The FFT decomposes an image into
sines and cosines of varying amplitudes and phases. The values of the resulting
transform represent the amplitudes of particular horizontal and vertical frequencies.
Thisimage information in the frequency domain shows how often patterns are
repeated within an image. Low frequencies represent gradual variationsin an image,
while high frequencies correspond to abrupt variations in the image.

Low frequencies tend to contain the most information because they determine the
overall shape or pattern in the image. High frequencies provide detail in the image,
but they are often contaminated by the spurious effects of noise. Masks can be easily
applied to the image within the frequency domain to remove the noise.

The following sections introduce the concepts needed to work with images and Fast
Fourier Transforms (FFTS):

« “Transforming to the Frequency Domain” on page 128

« “Displaying Imagesin the Frequency Domain” on page 133

e “Transforming from the Frequency Domain” on page 136
The FFT processis the basis for many filters used in image processing. One of the
easiest FFT filtersto understand is the one used for background noise removal. This

filter is simply a mask applied to the image in the frequency domain. See “Removing
Noise with the FFT” on page 139 for an example of how to use this type of filter.

Transforming to the Frequency Domain

When an image is transformed with FFT from the spatial domain to the frequency
domain, the transformation processis referred to as aforward FFT. The forward FFT
process can be performed with IDL’'s FFT function.

In the frequency domain, the lowest frequencies usually contain most of the
information, which is shown by the large peak in the center of the data. If the
transform is shown as a surface, the peak of low frequencies appears as a spike. If the
transform is shown as an image, the peak of low frequencies is composed of the
brightest pixels.

Transforming Between Domains with FFT Image Processing in IDL

Chapter 7: Transforming Between Domains 129

If the image does not contain any background noise, the rest of the data frequencies
are very close to zero. However, the results of the FFT function have avery wide
range. An initial display may not show any variations from zero, but a smaller range
will show that the image does actually contain background noise. Since scaling a
range can sometimes be quite arbitrary, different methods are used. See " Displaying
Images in the Frequency Domain” on page 133 for more information on displaying
the results of aforward FFT.

The following example shows how to use IDL’s FFT function to compute a forward
FFT. This example uses the first image within the abnorm. dat filein the
examples/data directory. The results of the FFT function are shifted to move the
origin (0, 0) of the x- and y-frequencies to the center of the data. Frequency
magnitude then increases with distance from the origin. If the results are not centered,
then the negative frequencies appear after the positive frequencies because of the
storage scheme of the FFT process. See the FFT description in the IDL Reference
Guide for more information on this storage scheme. Complete the following steps for
a detailed description of the process.

Example Code
See forwardfft.pro inthe examples/doc/image subdirectory of the IDL
installation directory for code that duplicates this example. Run the example
procedure by entering forwardf ft at the IDL command prompt or view thefilein
an IDL Editor window by entering . EDIT forwardfft.pro.

1. Import the first image from the abnorm. dat file:

imageSize = [64, 64]
file = FILEPATH('abnorm.dat',6 $
SUBDIRECTORY = ['examples', 'data'])
image = READ_BINARY (file, DATA_DIMS = imageSize)

2. Define adisplay size parameter to resize the image when displaying it:
displaySize = 2*imageSize
3. Initidizethe display:

DEVICE, DECOMPOSED = 0
LOADCT, O

4. Create awindow and display the image:

WINDOW, 0, XSIZE = displaySize[0], $
YSIZE = displaySize[l], TITLE = 'Original Image'
TVSCL, CONGRID(image, displaySize[0], $
displaySize[l])

Image Processing in IDL Transforming Between Domains with FFT

javascript:doIDL("forwardfft")
javascript:doIDL(".edit forwardfft.pro")

130

Note

Chapter 7: Transforming Between Domains

The following figure shows the original image.

Figure 7-1: Original Gated Blood Pool Image

With the FFT function, transform the image into the frequency domain:
ffTransform = FFT(image)
Shift the zero frequency location from (0, 0) to the center of the display:

center = imageSize/2 + 1
fftShifted = SHIFT (ffTransform, center)

Calculate the horizontal and vertical frequency vaues, which will be used as
the values for the display axes.

interval = 1.

hFrequency = INDGEN (imageSize[0])

hFrequency[center[0]] = center[0] - imageSize[0] + $
FINDGEN (center([0] - 2)

hFrequency = hFrequency/ (imageSize[0]/interval)

hFregShifted = SHIFT (hFrequency, -center[0])

vFrequency = INDGEN (imageSize[l])

vFrequency[center[1l]] = center[l] - imageSizel[l] + $
FINDGEN (center[1] - 2)

vFrequency = vFrequency/ (imageSize[l]/interval)

vFregShifted = SHIFT (vFrequency, -center[1l])

The previous two steps were performed because of the storage scheme of the
FFT process. See the FFT description in the IDL Reference Guide for more
information on this storage scheme.

Transforming Between Domains with FFT Image Processing in IDL

Chapter 7: Transforming Between Domains 131

8. Create another window and display the frequency transform:

WINDOW, 1, TITLE = 'FFT: Transform'

SHADE_SURF, fftShifted, hFregShifted, vFregShifted, $
/XSTYLE, /YSTYLE, /ZSTYLE, $
TITLE = 'Transform of Image', $

XTITLE = 'Horizontal Frequency',6 $
YTITLE = 'Vertical Frequency',6 $
ZTITLE = 'Real Part of Transform', CHARSIZE = 1.5

The following figure shows the results of applying the FFT to theimage. The
dataat the high frequencies seem to be close to zero, but the peak (spike) along
the z-axis is so large that a closer look is needed.

of IMagT

Tm“sfo e

&0 (-

Teh Porl of Trawafiorm,

Figure 7-2: FFT of the Gated Blood Pool Image

Note
The data type of the array returned by the FFT function is complex, which
contains real and imaginary parts. The amplitude is the absolute value of the
FFT, while the phase is the angle of the complex number, computed using
the arctangent. In the above surface, we are only displaying the real part. In
most cases, the imaginary part will [ook the same as the real part.

Image Processing in IDL Transforming Between Domains with FFT

132 Chapter 7: Transforming Between Domains

9. Create another window and display the frequency transform with a data (2)
range of 0to 5:

WINDOW, 2, TITLE = 'FFT: Transform (Closer Look)'
SHADE_SURF, fftShifted, hFregShifted, vFregShifted, $
/XSTYLE, /YSTYLE, /ZSTYLE, $
TITLE = 'Transform of Image', $

XTITLE = 'Horizontal Frequency', $

YTITLE = 'Vertical Frequency', $

ZTITLE = 'Real Part of Transform', CHARSIZE = 1.5, $
ZRANGE = [0., 5.]

The following figure shows the resulting transform after scaling the z-axis
range from 0 to 5. You can now see that the central peak is surrounded by
smaller peaks containing both high frequency information and noise.

Teah Port of Tranforn

Figure 7-3: FFT of the Gated Blood Pool Image Scaled Between 0 and 5

Transforming Between Domains with FFT Image Processing in IDL

Chapter 7: Transforming Between Domains 133

Displaying Images in the Frequency Domain

Within the frequency domain, the range of values from the peak to the high frequency
noise is extreme. You can use alogarithmic scale to retain the shape of the surface,
but reduce itsrange. Since the logarithmic scale only appliesto positive values, you
should first compute the power spectrum, which is the absolute value squared of the
transform.

The following example shows how to display the results of IDL’s FFT function. This
example also uses the first image within the abnorm. dat filein the
examples/data directory. The results of the transform are shifted to move the
origin (0, 0) of the horizontal and vertical frequenciesto the center of the display. If
the results are not centered then the negative frequencies appear after the positive
frequencies because of the storage scheme of the FFT process. See FFT for more
information on its storage scheme. Compl ete the following steps for a detailed
description of the process.

Example Code
Seedisplayfft.pro inthe examples/doc/image subdirectory of the IDL
installation directory for code that duplicates this example. Run the example
procedure by entering displayfft at the DL command prompt or view thefilein
an IDL Editor window by entering .EDIT displayfft.pro.

1. Import the first image from the abnorm. dat file:

imageSize = [64, 64]
file = FILEPATH('abnorm.dat', $
SUBDIRECTORY = ['examples', 'data'l)
image = READ_BINARY (file, DATA_DIMS = imageSize)

2. Initialize adisplay size parameter to resize the image when displaying it:
displaySize = 2*imageSize
3. Initidizethe display:

DEVICE, DECOMPOSED = 0
LOADCT, O

4. Create awindow and display the image:

WINDOW, 0, XSIZE = displaySize[0], YSIZE = displaySize[l], S
TITLE = 'Original Image'

TVSCL, CONGRID(image, displaySize[0], $
displaySize[1])

Image Processing in IDL Transforming Between Domains with FFT

javascript:doIDL("displayfft")
javascript:doIDL(".edit displayfft.pro")

134

Note

Chapter 7: Transforming Between Domains

The following figure shows the original image.

Figure 7-4: Original Gated Blood Pool Image

Transform the image into the frequency domain:
ffTransform = FFT(image)
Shift the zero frequency location from (0, 0) to the center of the display:

center = imageSize/2 + 1
fftShifted = SHIFT (ffTransform, center)

Calculate the horizontal and vertical frequency vaues, which will be used as
the values for the display axes.

interval = 1.

hFrequency = INDGEN (imageSize[0])

hFrequency[center[0]] = center[0] - imageSize[0] + $
FINDGEN (center([0] - 2)

hFrequency = hFrequency/ (imageSize[0]/interval)

hFregShifted = SHIFT (hFrequency, -center[0])

vFrequency = INDGEN (imageSize[l])

vFrequency[center[1l]] = center[l] - imageSizel[l] + $
FINDGEN (center[1] - 2)

vFrequency = vFrequency/ (imageSize[l]/interval)

vFregShifted = SHIFT (vFrequency, -center[1l])

The previous two steps were performed because of the storage scheme of the
FFT process. See the FFT description in the IDL Reference Guide for more
information on this storage scheme.

Transforming Between Domains with FFT Image Processing in IDL

Chapter 7: Transforming Between Domains 135

8. Compute the power spectrum of the transform:
powerSpectrum = ABS(fftShifted) 2

9. Apply alogarithmic scale to values of the power spectrum:
scaledPowerSpect = ALOG10 (powerSpectrum)

10. Create another window and display the power spectrum as a surface:

WINDOW, 1, TITLE = 'FFT Power Spectrum: '+ $

'Logarithmic Scale (surface)'
SHADE_SURF, scaledPowerSpect, hFregShifted, vFregShifted, $

/XSTYLE, /YSTYLE, /ZSTYLE, $

TITLE = 'Log-scaled Power Spectrum', $

XTITLE = 'Horizontal Frequency',6 $

YTITLE = 'Vertical Frequency', $

ZTITLE = 'Log(Squared Amplitude)', CHARSIZE = 1.5

The following figure shows the log-scaled power spectrum as a surface. Both
low and high frequency information are visible in this display.

trurt?
pawer spe?
o
El

—~sad!
Lagd ™"

Figure 7-5: Log-scaled FFT Power Spectrum of Image (as a surface)

Image Processing in IDL Transforming Between Domains with FFT

136 Chapter 7: Transforming Between Domains

Note
The data type of the array returned by the FFT function is complex, which
contains real and imaginary parts. The amplitude is the absolute value of the
FFT, while the phase is the angle of the complex number, computed using
the arctangent. In the above surface, we are only displaying the real part. In
most cases, the imaginary part will look the same as the real part.

11. Create another window and display the log-scaled transform as an image:

WINDOW, 2, XSIZE = displaySize[0], YSIZE = displaySize[l], S
TITLE = 'FFT Power Spectrum: Logarithmic Scale (image)'

TVSCL, CONGRID(scaledPowerSpect, displaySize[0], $
displaySize[1])

The following figure shows the log-scaled power spectrum as an image. The
brighter pixels near the center of the display represent the low frequency peak
of information-containing data. The noise appears as random darker pixels
within the image.

Figure 7-6: Log-scaled FFT Power Spectrum of Image (as an image)

Transforming from the Frequency Domain

After manipulating an image within the frequency domain, you will need to
transform the image back to the spatial domain. This transformation processis
referred to as an inverse FFT. The inverse FFT process can be performed with IDL’s
FFT function by setting the INVERSE keyword.

The following example shows how to use IDL’s FFT function to compute an inverse
FFT. This example uses the first image within the abnorm. dat filein the
examples/data directory. Theimage is not manipulated in this example whileitis

Transforming Between Domains with FFT Image Processing in IDL

Chapter 7: Transforming Between Domains 137

in the frequency domain to show that no information is lost when using the FFT.
However, manipulating spurious high frequency data within the frequency domain is
auseful way to remove background noise from an image, as shown in “Removing
Noise with the FFT” on page 139. Complete the following steps for a detailed
description of the process.

Example Code
See inversefft.pro inthe examples/doc/image subdirectory of the IDL
installation directory for code that duplicates this example. Run the example
procedure by entering inversef £t at the DL command prompt or view thefilein
an IDL Editor window by entering . EDIT inversefft.pro.

1. Import the first image from the abnorm. dat file:

imageSize = [64, 64]
file = FILEPATH('abnorm.dat', $
SUBDIRECTORY = ['examples', 'data'])

image = READ_BINARY (file, DATA_DIMS = imageSize)

2. Initialize adisplay size parameter to resize the image when displaying it:
displaySize = 2*imageSize

3. Initidizethe display:

DEVICE, DECOMPOSED = 0
LOADCT, O

4. With the FFT function, transform the image into the frequency domain:
ffTransform = FFT(image)

5. Shift the zero frequency location from (0, 0) to the center of the display:
center = imageSize/2 + 1

fftShifted = SHIFT(ffTransform, center)

Note
This step was performed because of the storage scheme of the FFT process.
See the FFT description in the IDL Reference Guide for more information on
this storage scheme.

6. Compute the power spectrum of the transform:
powerSpectrum = ABS(fftShifted) "2
7. Apply alogarithmic scale to values of the power spectrum:

scaledPowerSpect = ALOG10 (powerSpectrum)

Image Processing in IDL Transforming Between Domains with FFT

javascript:doIDL("inversefft")
javascript:doIDL(".edit inversefft.pro")

138 Chapter 7: Transforming Between Domains

8. Create awindow and display the power spectrum as an image:

WINDOW, 0, XSIZE = displaySize[0], YSIZE = displaySize[l], $
TITLE = 'Power Spectrum Image'

TVSCL, CONGRID(scaledPowerSpect, displaySize[0], $
displaySizel[l])

The following figure shows the log-scaled power spectrum.

Figure 7-7: Log-scaled FFT Power Spectrum of the Gated Blood Pool Image

9. With the FFT function, transform the frequency domain data back to the
original image (obtain the inverse transform):

fftInverse = REAL_PART(FFT(ffTransform, /INVERSE))

Note
The data type of the array returned by the FFT function is complex, which
contains real and imaginary parts. The amplitude is the absolute value of the
FFT, while the phase is the angle of the complex number, computed using
the arctangent. In the above surface, we are only displaying the real part. In
most cases, the imaginary part will look the same as the real part.

10. Create another window and display the inverse transform as an image:

WINDOW, 1, XSIZE = displaySize[0], YSIZE = displaySize[l], $
TITLE = 'FFT: Inverse Transform'

TVSCL, CONGRID(fftInverse, displaySize[0], $
displaySize[1l])

Transforming Between Domains with FFT Image Processing in IDL

Chapter 7: Transforming Between Domains 139

The inverse transform is the same as the original image as shown in the
following figure. Unlike some domain transformations, all image information
is retained when transforming data to and from the frequency domain.

Figure 7-8: Inverse FFT of the Gated Blood Pool Image

Removing Noise with the FFT

This example uses IDL’s FFT function to remove noise from an image. The image
comes from the abnorm. dat file found in the examples/data directory. The first
display contains the original image and its transform. The noiseis very evident in the
transform. A surface representation of the power spectrum helpsto determine the
threshold necessary to remove the noise from the image. In the surface
representation, the noise appears random and below aridge containing the spike. The
ridge and spike represent coherent information within theimage. A mask isapplied to
the transform to remove the noise and the inverse transform is applied, resulting in a
clearer image. Complete the following steps for a detailed description of the process.

Example Code
See removingnoisewithfft.pro inthe examples/doc/image subdirectory
of the IDL installation directory for code that duplicates this example. Run the
example procedure by entering removingnoisewithfft at the IDL command
prompt or view thefilein an IDL Editor window by entering . EDIT
removingnoisewithfft.pro.

1. Import the first image from the abnorm. dat file:

imageSize = [64, 64]
file = FILEPATH('abnorm.dat', $
SUBDIRECTORY = ['examples', 'data'l)

Image Processing in IDL Transforming Between Domains with FFT

javascript:doIDL("removingnoisewithfft")
javascript:doIDL(".edit removingnoisewithfft.pro")
javascript:doIDL(".edit removingnoisewithfft.pro")

140 Chapter 7: Transforming Between Domains

image = READ_BINARY (file, DATA_DIMS = imageSize)

2. Initialize adisplay size parameter to resize the image when displaying it:
displaySize = 2*imageSize

3. Initialize the display:

DEVICE, DECOMPOSED = 0
LOADCT, O

4. Create awindow and display the original image

WINDOW, 0, XSIZE = 2*displaySize[0], $
YSIZE = displaySize[l], S
TITLE = 'Original Image and Power Spectrum'
TVSCL, CONGRID(image, displaySize[0], displaySize[l]), O

5. Transform the image into the frequency domain:
ffTransform = FFT (image)
6. Shift the zero frequency location from (0, 0) to the center of the display:

center = imageSize/2 + 1
fftShifted = SHIFT (ffTransform, center)

7. Calculate the horizontal and vertical frequency values, which will be used as
the values for the axes of the display.

interval = 1.

hFrequency = INDGEN (imageSize[0])

hFrequency[center[0]] = center[0] - imageSize[0] + $
FINDGEN (center[0] - 2)

hFrequency = hFrequency/ (imageSize[0]/interval)

hFregShifted = SHIFT (hFrequency, -center[0])

vFrequency = INDGEN (imageSize[l])

vFrequency[center[1]] = center[l] - imageSize[l] + $
FINDGEN (center[1] - 2)

vFrequency = vFrequency/ (imageSize[l]/interval)

vFregShifted = SHIFT (vFrequency, -center[1l])

Note
The previous two steps were performed because of the storage scheme of the
FFT process. Seethe FFT description in the IDL Reference Guide for more
information on this storage scheme.

8. Compute the power spectrum of the transform:
powerSpectrum = ABS(fftShifted) "2

9. Apply alogarithmic scale to values of the power spectrum:

Transforming Between Domains with FFT Image Processing in IDL

Chapter 7: Transforming Between Domains 141

scaledPowerSpect = ALOG10 (powerSpectrum)
10. Display the log-scaled power spectrum:

TVSCL, CONGRID(scaledPowerSpect, displaySize[0], $
displaySize[1l]), 1

The following figure shows the original image and its log-scaled power

spectrum. The black pixels (which appear random) in the power spectrum
represent noise.

Figure 7-9: Original Image and Its FFT Power Spectrum

11. Scale the power spectrum to make its maximum value equal to zero:
scaledPS0 = scaledPowerSpect - MAX(scaledPowerSpect)

12. Create another window and display the scaled transform as a surface:

WINDOW, 1, $
TITLE = 'Power Spectrum Scaled to a Zero Maximum'
SHADE_SURF, scaledPS0, hFregShifted, vFregShifted, $
/XSTYLE, /YSTYLE, /ZSTYLE, $

TITLE = 'Zero Maximum Power Spectrum', $
XTITLE = 'Horizontal Frequency', $

YTITLE = 'Vertical Frequency', $

ZTITLE = 'Max-Scaled(Log(Power Spectrum))', $

CHARSIZE = 1.5

Image Processing in IDL Transforming Between Domains with FFT

142 Chapter 7: Transforming Between Domains

The following figure shows the resulting log-scaled power spectrum as a
surface.

WSl oo Pawes Sprcram)

Figure 7-10: FFT Power Spectrum of the Image Scaled to a Zero Maximum

Note
The data type of the array returned by the FFT function is complex, which

contains real and imaginary parts. Thereal part is the amplitude, and the
imaginary part isthe phase. In image processing, we are more concerned
with the amplitude, which is the only part represented in the surface and
displays of the results of the transformation. However, the imaginary part is
retained for the inverse transform back into the spatial domain.

13. Threshold the image at avalue of -5.25, which is just below the peak of the
power spectrum, to remove the noise:

mask = REAL_PART (scaledPS0) GT -5.25
14. Apply the mask to the transform to exclude the noise:

maskedTransform = fftShifted*mask

Transforming Between Domains with FFT Image Processing in IDL

Chapter 7: Transforming Between Domains

143
15. Create another window and display the power spectrum of the masked
transform:
WINDOW, 2, XSIZE = 2*displaySize[0], S
YSIZE = displaySize[l], $

TITLE = 'Power Spectrum of Masked Transform and Results'
TVSCL, CONGRID(ALOG10 (ABS (maskedTransform™2)), $
displaySize[0], displaySize[l]), 0, /NAN
16. Shift the masked transform to the position of the original transform:
maskedShiftedTrans

SHIFT (maskedTransform,
17. Apply theinverse transformation to the masked transform:

-center)

inverseTransform = REAL_PART (FFT (maskedShiftedTrans,
/INVERSE))

$
18. Display the results of the inverse transformation:

TVSCL, CONGRID(inverseTransform, displaySizel[0], $
displaySize[1l]), 1

The following figure shows the power spectrum of the masked transform and
its inverse, which contains less noise than the original image.

Figure 7-11: Masked FFT Power Spectrum and Resulting Inverse Transform

Image Processing in IDL

Transforming Between Domains with FFT

144 Chapter 7: Transforming Between Domains

Transforming Between Domains with
Wavelets

Images do not have to be completely transformed into the frequency domain. Some
transformations only partially convert an image into the frequency domain. One of
the most common types of these transformations is into the time-frequency or
wavelet domain.

The Discrete Wavelet Transform (DWT) is used in numerical analysisto transform
an image from the spatial domain to the time-frequency domain and back again. This
transform is different from the FFT. The FFT decomposes an image with sines and
cosines over the entire image. In contrast, the wavelet functions are applied multiple
times over portions.

The image information within the time-frequency domain shows the frequency of
patterns within an image, and how these patterns vary over the image. The low
frequencies typically contain most of the information, which is commonly seen asa
peak (spike) of data within the time-frequency domain. The information at the high
frequencies is usually noise. The image can easily be atered within the time-
frequency domain to remove the noise.

The following sections introduce the concepts needed to work with images and
Discrete Wavelet Transforms (DWTS):

e “Transforming to the Time-Frequency Domain” on page 145
» “Displaying Imagesin the Time-Frequency Domain” on page 148
e “Transforming from the Time-Frequency Domain” on page 151

The wavelet transformation process is the basis for many image compression
algorithms. See “Removing Noise with the Wavelet Transform” on page 154 for an
example of how wavelets can be used to compress data and remove noise.

Transforming Between Domains with Wavelets Image Processing in IDL

Chapter 7: Transforming Between Domains 145

Transforming to the Time-Frequency Domain

When an image is transformed with a DWT from the spatial domain to the time-
frequency domain, the transformation processis referred to as aforward DWT. The
forward DWT process can be performed with IDL's WTN function.

Thelow frequencies usually contain most of the useful information within the image,
which is shown by the peak (spike) of data around the origin within the time-
frequency domain. If the image does not contain any background noise, therest of the
data frequency values are very close to zero. However, the results of the WTN
function have avery widerange. Aninitia display may not show any variations from
zero, but a smaller surface range will show that the image does actually contain
background noise. Since scaling a range can sometimes be quite arbitrary, different
methods are used. See “Displaying Imagesin the Time-Frequency Domain” on

page 148 for more information on displaying the results of aforward DWT.

The following example shows how to use IDL's WTN function to compute aforward
DWT. This example uses the first image within the abnorm. dat file, whichisin the
examples/data directory. Complete the following steps for adetailed description
of the process.

Example Code
See forwardwavelet .pro inthe examples/doc/image subdirectory of the
IDL instalation directory for code that duplicates this example. Run the example
procedure by entering forwardwavelet at the IDL command prompt or view the
filein an IDL Editor window by entering .EDIT forwardwavelet.pro.

1. Import the first image from the abnorm. dat file:

imageSize = [64, 64]
file = FILEPATH('abnorm.dat',6 $
SUBDIRECTORY = ['examples', 'data'])
image = READ_BINARY (file, DATA_DIMS = imageSize)

2. Initialize adisplay size parameter to resize the image when displaying it:
displaySize = 2*imageSize
3. Initialize the display:

DEVICE, DECOMPOSED = 0
LOADCT, O

4. Create awindow and display the image:

WINDOW, 0, XSIZE = displaySize[0], $
YSIZE = displaySize[l], TITLE = 'Original Image'

Image Processing in IDL Transforming Between Domains with Wavelets

javascript:doIDL("forwardwavelet")
javascript:doIDL(".edit forwardwavelet.pro")

146 Chapter 7: Transforming Between Domains

TVSCL, CONGRID(image, displaySize[0], $
displaySize[1])

The following figure shows the original image.

Figure 7-12: Original Gated Blood Pool Image

5. Withthe WTN function, transform the image into the wavelet domain:

waveletTransform = WTIN(image, 20)

The Coef argument is set to 20 to specify 20 wavelet filter coefficients to
provide the most efficient wavelet estimate possible. Less wavelet filter
coefficients can be used with larger images to decrease computation time.

6. Create another window and display the wavelet transform:

WINDOW, 1, TITLE = 'Wavelet: Transform'
SHADE_SURF, waveletTransform, /XSTYLE, /YSTYLE, $
/ZSTYLE, TITLE = 'Transform of Image', $
XTITLE = 'Horizontal Number', $
YTITLE = 'Vertical Number',6 $
ZTITLE = 'Amplitude', CHARSIZE = 1.5

Transforming Between Domains with Wavelets Image Processing in IDL

Chapter 7: Transforming Between Domains 147

The following figure shows the wavelet transform. The data at the high

frequencies seemsto be close to zero, but the peak (spike) in the zrangeis so
large that a closer ook is needed.

of IMagT

Tm“sfo e

s000 F

po00

Figure 7-13: Wavelet Transform of Gated Blood Pool Image

7. Create another window and display the wavelet transform, scaling the data (2)

range from 0 to 200:
WINDOW, 2, TITLE = 'Wavelet: Transform (Closer Look)'
SHADE_SURF, waveletTransform, /XSTYLE, /YSTYLE, $
/ZSTYLE, TITLE = 'Transform of Image',6 $
XTITLE = 'Horizontal Number', $
YTITLE = 'Vertical Number',
ZTITLE = 'Amplitude', CHARSIZE = 1.5, $
ZRANGE = [0., 200.]

Image Processing in IDL Transforming Between Domains with Wavelets

148 Chapter 7: Transforming Between Domains

The following figure shows the wavel et transform with the z-axis ranging from
0to 200. A closer looks shows that the image does contain background noise.

Figure 7-14: Wavelet Transform of Image Scaled Between 0 and 200
Displaying Images in the Time-Frequency Domain

Within the time-frequency domain, the range of values from the peak to the spurious
high frequency datais extreme. Thelogarithmic scale is applied to retain the shape of
the surface, but reduce its range. Since the logarithmic scale only applies to positive
values, you should first compute the power spectrum, which is the absolute value
squared of the transform.

The following example shows how to display the results of IDL's WTN function.
This example also uses the first image within the abnorm. dat file, which isin the
examples/data directory. Complete the following steps for a detailed description
of the process.

Example Code
See displaywavelet.pro inthe examples/doc/image subdirectory of the
IDL instalation directory for code that duplicates this example. Run the example
procedure by entering displaywavelet at the IDL command prompt or view the
fileinan IDL Editor window by entering .EDIT displaywavelet.pro.

Transforming Between Domains with Wavelets Image Processing in IDL

javascript:doIDL("displaywavelet")
javascript:doIDL(".edit displaywavelet.pro")

Chapter 7: Transforming Between Domains

1. Import the first image from the abnorm. dat file:

imageSize = [64, 64]
file = FILEPATH('abnorm.dat', $
SUBDIRECTORY = |['examples', 'data'l)

image = READ_BINARY (file, DATA_DIMS = imageSize)

2. Initialize adisplay size parameter to resize the image when displaying it:
displaySize = 2*imageSize

3. Initialize the display:

DEVICE, DECOMPOSED = 0
LOADCT, O

4. Create awindow and display the image:

WINDOW, 0, XSIZE = displaySize[0], $
YSIZE = displaySize[l], TITLE = 'Original Image'
TVSCL, CONGRID(image, displaySize[0], $
displaySize[1l])

The following figure shows the original image.

Figure 7-15: Original Gated Blood Pool Image

5. Transform the image into the time-frequency domain.
waveletTransform = WIN(image, 20)

The Coef argument is set to 20 to specify 20 wavelet filter coefficients to
provide the most efficient wavelet estimate possible. Less wavelet filter

coefficients can be used with larger images to decrease computation time.

6. Compute the power spectrum.

powerSpectrum = ABS (waveletTransform) "2

149

Image Processing in IDL Transforming Between Domains with Wavelets

150 Chapter 7: Transforming Between Domains

7. Apply alogarithmic scale to the power spectrum:
scaledPowerSpect = ALOG10 (powerSpectrum)

8. Create another window and display the log-scaled power spectrum as a
surface:

WINDOW, 1, TITLE = 'Wavelet Power Spectrum: ' + $
'Logarithmic Scale (surface)'
SHADE_SURF, scaledPowerSpect, /XSTYLE, /YSTYLE, /ZSTYLE, $

TITLE = 'Log-scaled Power Spectrum of Image', $
XTITLE = 'Horizontal Number', $

YTITLE = 'Vertical Number', $

ZTITLE = 'Log(Squared Amplitude)', CHARSIZE = 1.5

The following figure shows the |og-scaled power spectrum of the wavelet
transform as a surface.

Figure 7-16: Log-scaled Wavelet Power Spectrum of Image (as a surface)

9. Create another window and display the log-scaled power spectrum as an

image:
WINDOW, 2, XSIZE = displaySize[0], YSIZE = displaySize[l], $
TITLE = 'Wavelet Power Spectrum: Logarithmic Scale
(image) '

TVSCL, CONGRID (scaledPowerSpect, displaySize[0], $
displaySize[l])

Transforming Between Domains with Wavelets Image Processing in IDL

Chapter 7: Transforming Between Domains 151

The following figure shows the log-scaled power spectrum as an image. Most
of the signal islocated near the origin (the lower left of the power spectrum
image). This data is shown as bright pixels at the origin. The noise appearsin
therest of the image.

Figure 7-17: Log-scaled Wavelet Power Spectrum of Image (as am image)

Transforming from the Time-Frequency Domain

After manipulating an image within the time-frequency domain, you will need to
transform it back to the spatial domain. This transformation process is referred to as
an inverse DWT. Theinverse DWT process can be performed with IDL's WTN
function by setting the INVERSE keyword.

The following example shows how to use IDL's WTN function to compute an
inverse DWT. This example uses the first image within the abnorm. dat file, which
isinthe examples/data directory. The imageis not manipulated whileitisin the
time-frequency domain to show that no datais lost when using the DWT. However,
mani pul ating datawithin the time-frequency domain is a useful way to compress data
and remove background noise from an image, as shown in “Removing Noise with the
Wavelet Transform” on page 154. Complete the following steps for a detailed
description of the process.

Example Code
See inversewavelet.pro inthe examples/doc/image subdirectory of the
IDL instalation directory for code that duplicates this example. Run the example
procedure by entering inversewavelet at the IDL command prompt or view the
fileinan IDL Editor window by entering .EDIT inversewavelet.pro.

Image Processing in IDL Transforming Between Domains with Wavelets

javascript:doIDL("inversewavelet")
javascript:doIDL(".edit inversewavelet.pro")

152 Chapter 7: Transforming Between Domains

1. Import the first image from the abnorm. dat file:

imageSize = [64, 64]
file = FILEPATH('abnorm.dat', $
SUBDIRECTORY = ['examples', 'data'l)

image = READ_BINARY (file, DATA_DIMS = imageSize)

2. Initialize adisplay size parameter to resize the image when displaying it:
displaySize = 2*imageSize

3. Initidizethe display:

DEVICE, DECOMPOSED = 0
LOADCT, O

4. Withthe WTN function, transform the image into the wavelet domain:
waveletTransform = WIN(image, 20)

The Coef argument is set to 20 to specify 20 wavelet filter coefficients to
provide the most efficient wavelet estimate possible. Fewer wavelet filter
coefficients can be used with larger images to decrease computation time.

5. Compute the power spectrum:
powerSpectrum = ABS (waveletTransform) "2
6. Apply alogarithmic scale to the power spectrum:
scaledPowerSpect = ALOGLlO0 (powerSpectrum)
7. Create awindow and display the log-scaled power spectrum as an image:

; Create a window and display the transform.

WINDOW, 0, XSIZE = displaySize[0], YSIZE = displaySize[l], $
TITLE = 'Power Spectrum Image'

TVSCL, CONGRID (scaledPowerSpect, displaySizel[0], $
displaySize[l])

Transforming Between Domains with Wavelets Image Processing in IDL

Chapter 7: Transforming Between Domains 153

The following figure shows the log-scaled power spectrum of the image.

Figure 7-18: Log-scaled Wavelet Power Spectrum of Image

8. Withthe WTN function, transform the wavelet domain data back to the
original image (obtain the inverse transform):

waveletInverse = WTN(waveletTransform, 20, /INVERSE)
9. Create another window and display the inverse transform as an image:

WINDOW, 1, XSIZE = displaySize[0], YSIZE = displaySize[l], $
TITLE = 'Wavelet: Inverse Transform'

TVSCL, CONGRID(waveletInverse, displaySize[0], $
displaySize[1l])

The inverse transform is the same as the original image. No image datais |ost when
transforming an image to and from the time-frequency domain.

Figure 7-19: Inverse of the Wavelet Transform of the Gated Blood Pool Image

Image Processing in IDL Transforming Between Domains with Wavelets

154 Chapter 7: Transforming Between Domains

Removing Noise with the Wavelet Transform

This example uses IDL’s WTN function to remove noise from an image. The image
comes from the abnorm. dat file found in the examples/data directory. Thefirst
display containsthe original image and its wavelet transform. The noiseis very
evident in theimage. A surface of the transform helps to determine beyond which
point the noise occurs. Only the important data is kept and noise is replaced by zero
values. Theinversetransform is then applied, resulting in a cleaner image. Complete
the following steps for a detailed description of the process.

Example Code
See removingnoisewithwavelet.pro inthe examples/doc/image
subdirectory of the IDL installation directory for code that duplicates this example.
Run the example procedure by entering removingnoisewithwavelet atthe
IDL command prompt or view thefilein an IDL Editor window by entering . EDIT
removingnoisewithwavelet.pro.

1. Import the first image from the abnorm. dat file:

imageSize = [64, 64]
file = FILEPATH('abnorm.dat', $
SUBDIRECTORY = ['examples', 'data'l)

image = READ_BINARY (file, DATA_DIMS = imageSize)

2. Initialize adisplay size parameter to resize the image when displaying it:
displaySize = 2*imageSize

3. Initidizethe display:

DEVICE, DECOMPOSED = 0
LOADCT, O

4. Create awindow and display the image:

WINDOW, 0, XSIZE = 2*displaySize[0], S
YSIZE = displaySize[l], S

TITLE = 'Original Image and Power Spectrum'
TVSCL, CONGRID(image, displaySize[0], $
displaySize[1l]), O

5. Determine the wavelet transform of the image:
waveletTransform = WTIN(image, 20)

The Coef argument is set to 20 to specify 20 wavelet filter coefficients to
provide the most efficient wavelet estimate possible. Fewer wavelet filter
coefficients can be used with larger images to decrease computation time.

Transforming Between Domains with Wavelets Image Processing in IDL

javascript:doIDL("removingnoisewithwavelet")
javascript:doIDL(".edit removingnoisewithwavelet.pro")
javascript:doIDL(".edit removingnoisewithwavelet.pro")

Chapter 7: Transforming Between Domains

155
6. Display the power spectrum of the transform:

TVSCL, CONGRID(ALOG10 (ABS (waveletTransform”2)),
displaySize[0], displaySizel[l]),

$
1
The following figure shows the original image and its power spectrum within
the time-frequency domain.

Figure 7-20: Gated Blood Pool Image and Its Wavelet Power Spectrum

7. Crop the transform to only include the quadrant of data closest to the spike of
low frequency in the lower-left corner:
croppedTransform

$

FLTARR (imageSize[0], imageSize[l])
croppedTransform[0, 0] = waveletTransform[0: (imageSize[0]/2),

0: (imageSize[1]/2)]

8. Create another window and display the power spectrum of the cropped
transform as an image:

WINDOW, 1, XSIZE =
YSIZE

TITLE

2*displaySize([0], $

displaySize[l], $

'Power Spectrum of Cropped Transform and Results'

TVSCL, CONGRID (ALOG10 (ABS (croppededTransform”2)), $
displaySize[0], displaySize[l]), 0, /NAN

9. Apply the inverse transformation to the masked power spectrum:

inverseTransform = WTN(maskedTransform,

20, /INVERSE)
10. Display results of the inverse transform:

TVSCL, CONGRID(inverseTransform, displaySize[0],
displaySize[l]), 1

$
Image Processing in IDL

Transforming Between Domains with Wavelets

156 Chapter 7: Transforming Between Domains

The following figure shows the power spectrum of the cropped transform and
its resulting inverse transform. The cropping process shows that only one
quarter of the data was needed to reconstruct the image. Theimageis
compressed by a4:1 ratio.

Figure 7-21: Masked Wavelet Power Spectrum and Its Resulting Inverse
Transform

Transforming Between Domains with Wavelets Image Processing in IDL

Chapter 7: Transforming Between Domains 157

Transforming to and from the Hough and
Radon Domains

The Hough transform is used to transform from the spatial domain to the Hough
domain and back again. The image information within the Hough domain shows the
pixels of the original (spatial) image as sinusoidal curves. If the points of the original
image form a straight line, their related sinusoidal curvesin the Hough domain will
intersect. Many intersections produce a peak. Masks can be easily applied to the
image within the Hough domain to determine if and where straight lines occur.

The Radon transform is used to transform from the spatial domain to the Radon
domain and back again. The image information within the Radon domain shows a
line through the original image as a point. Specific features (geometries) in the
origina image produce peaks or collections of points. Masks can be easily applied to
the image within the Radon domain to determine if and where these specific features
occur.

Unlike transformations to and from the frequency and time-frequency domains, the
Hough and Radon transforms do lose some data during the transformation process.
These transformations are usually applied to the original image as a mask instead of
producing an image from the results of the transform itself. See the HOUGH and
RADON descriptionsin the IDL Reference Guide for more information on Hough
and Radon transform theory.

The following sections introduce the concepts needed to work with images and these
transforms:

e “Transforming to the Hough and Radon Domains (Projecting)” on page 158

e “Transforming from the Hough and Radon Domains (Backprojecting)” on
page 161

The Hough transformation process is used to find straight lines within an image. See
“Finding Straight Lineswith the Hough Transform” on page 164 for an example. The
Radon transformation process is used to enhance contrast within an image. See

“Color Density Contrasting with the Radon Transform” on page 170 for an example.

Image Processing in IDL Transforming to and from the Hough and Radon Domains

158 Chapter 7: Transforming Between Domains

Transforming to the Hough and Radon Domains
(Projecting)

When an image is transformed from the spatial domain to either the Hough or Radon
domain, the transformation processis referred to as a Hough or Radon projection.
The projection process can be performed with either IDL’'s HOUGH function or
IDL’s RADON function, depending on which transform you want to use.

The following example shows how to use IDL’s HOUGH and RADON functions to
compute and display the Hough and Radon projections. This example uses the first
image within the abnorm.dat file, which isin the examples/data directory.
Complete the following steps for a detailed description of the process.

Example Code
See forwardhoughandradon.pro inthe examples/doc/image subdirectory
of the IDL installation directory for code that duplicates this example. Run the
example procedure by entering forwardhoughandradon at the IDL command
prompt or view the filein an IDL Editor window by entering . EDIT
forwardhoughandradon.pro.

1. Import the first image from the abnorm. dat file:

imageSize = [64, 64]
file = FILEPATH('abnorm.dat',6 $
SUBDIRECTORY = ['examples', 'data'])

image = READ_BINARY (file, DATA_DIMS = imageSize)

2. Definethe display size and offset parameters to resize and position the images
when displaying them:

displaySize = 2*imageSize
offset = displaySize/3

3. Initialize the display:

DEVICE, DECOMPOSED = 0
LOADCT, O

4. Create awindow and display the image:

WINDOW, 0, XSIZE = displaySize[0], $
YSIZE = displaySize[l], TITLE = 'Original Image'
TVSCL, CONGRID (image, displaySizel[0], $
displaySize[l])

Transforming to and from the Hough and Radon Domains Image Processing in IDL

javascript:doIDL("forwardhoughandradon")
javascript:doIDL(".edit forwardhoughandradon.pro")
javascript:doIDL(".edit forwardhoughandradon.pro")

Chapter 7: Transforming Between Domains 159

The following figure shows the original image.

Figure 7-22: Original Gated Blood Pool Image

5. With the HOUGH function, transform the image into the Hough domain:

houghTransform = HOUGH (image, RHO = houghRadii, $
THETA = houghAngles, /GRAY)

6. Create another window and display the Hough transform with axes provided
by the PLOT procedure:

WINDOW, 1, XSIZE = displaySize[0] + 1.5*offset[0], $
YSIZE = displaySize[l] + 1.5*offset[1l], $
TITLE = 'Hough Transform'

TVSCL, CONGRID (houghTransform, displaySize[0], $
displaySize[l]), offset[0], offset[1]

PLOT, houghAngles, houghRadii, /XSTYLE, /YSTYLE, $

TITLE = 'Hough Transform', XTITLE = 'Theta', $
YTITLE = 'Rho', /NODATA, /NOERASE, /DEVICE, $
POSITION = [offset[0], offset[1l], $

displaySize[0] + offset[0], $
displaySize[l] + offset[1]], CHARSIZE = 1.5

Image Processing in IDL Transforming to and from the Hough and Radon Domains

160 Chapter 7: Transforming Between Domains

The following figure shows the resulting Hough transform.

Hough Transform

40

20

=20

—40

0.0 05 1.0 1.5 2.0 2.5 3.0
Theta

Figure 7-23: Hough Transform of the Gated Blood Pool Image

7. With the RADON function, transform the image into the Radon domain with
axes provided by the PLOT procedure:

radonTransform = RADON(image, RHO = radonRadii, $
THETA = radonAngles, /GRAY)

8. Create another window and display the Radon transform:

WINDOW, 2, XSIZE = displaySize[0] + 1.5*offset[0], $
YSIZE = displaySize[l] + 1.5*offset[1l], $

TITLE = 'Radon Transform'

TVSCL, CONGRID(radonTransform, displaySize[0], $
displaySize[l]), offset[0], offset[1]

PLOT, radonAngles, radonRadii, /XSTYLE, /YSTYLE, $
TITLE = 'Radon Transform', XTITLE = 'Theta', $
YTITLE = 'Rho', /NODATA, /NOERASE, /DEVICE, $
POSITION = [offset[0], offset[1l], $
displaySize[0] + offset[0], $
displaySize[l] + offset[1]], CHARSIZE = 1.5

Transforming to and from the Hough and Radon Domains Image Processing in IDL

Chapter 7: Transforming Between Domains 161

The following figure shows the resulting Radon transform.

Fadon Transform

40

20

Rho
o

—Z0

—40

00 05 1.0 1.5 2.0 2.5 30
Theta

Figure 7-24: Radon Transform of the Gated Blood Pool Image

Transforming from the Hough and Radon Domains
(Backprojecting)

After manipulating an image within either the Hough or Radon domain, you may
need to transform the image from that domain back to the spatial domain. This
transformation processis referred to as a Hough or Radon backprojection. The
backprojection process can be performed with either IDL's HOUGH function or
IDL’'s RADON function, depending on which domain your imageisin. You can
perform the backprojection process with these functions by setting the
BACKPROJECT keyword.

The following example shows how to use IDL’'s HOUGH and RADON functions to
compute the backprojection from these domains. This example uses the first image
within the abnorm. dat file, whichisin the examples/data directory. Although
the image is not manipulated while it isin the Hough or Radon domain, information
islost when using these transforms. Complete the following steps for a detailed
description of the process.

Example Code
See backprojecthoughandradon.pro inthe examples/doc/image
subdirectory of the IDL installation directory for code that duplicates this example.

Image Processing in IDL Transforming to and from the Hough and Radon Domains

162 Chapter 7: Transforming Between Domains

Run the example procedure by entering backprojecthoughandradon at the DL
command prompt or view the filein an IDL Editor window by entering . EDIT
backprojecthoughandradon.pro.

1. Import in thefirst image from the abnorm. dat file:

imageSize = [64, 64]
file = FILEPATH('abnorm.dat',6 $
SUBDIRECTORY = ['examples', 'data'])

image = READ_BINARY (file, DATA_DIMS = imageSize)

2. Definethe display size and offset parameters to resize and position the images
when displaying them:

displaySize = 2*imageSize
offset = displaySize/3

3. Initidizethe display:

DEVICE, DECOMPOSED = 0
LOADCT, O

4. With the HOUGH function, transform the image into the Hough domain:

houghTransform = HOUGH (image, RHO = houghRadii, $
THETA = houghAngles, /GRAY)

5. Create another window and display the Hough transform with axes provided
by the PLOT procedure:

WINDOW, 1, XSIZE = displaySize[0] + 1.5*offset[0], $
YSIZE = displaySize[l] + 1.5*offset[1l], $

TITLE = 'Hough Transform'

TVSCL, CONGRID (houghTransform, displaySizel[0], $
displaySize[l]), offset[0], offset[1l]

PLOT, houghAngles, houghRadii, /XSTYLE, /YSTYLE, $
TITLE = 'Hough Transform', XTITLE = 'Theta', $
YTITLE = 'Rho', /NODATA, /NOERASE, /DEVICE, $
POSITION = [offset[0], offset[1l], $
displaySize[0] + offset[0], $
displaySize[l] + offset[1]], CHARSIZE = 1.5

6. With the RADON function, transform the image into the Radon domain with
axes provided by the PLOT procedure:

radonTransform = RADON(image, RHO = radonRadii, $
THETA = radonAngles, /GRAY)

Transforming to and from the Hough and Radon Domains Image Processing in IDL

javascript:doIDL("backprojecthoughandradon")
javascript:doIDL(".edit backprojecthoughandradon.pro")
javascript:doIDL(".edit backprojecthoughandradon.pro")

Chapter 7: Transforming Between Domains 163
7. Create another window and display the Radon transform:

WINDOW, 2, XSIZE = displaySize[0] + 1.5*offset[0], $

YSIZE displaySize[l] + 1.5*offset[1], $
TITLE = 'Radon Transform'

TVSCL, CONGRID (radonTransform, displaySize[0], $
displaySize[l]), offset[0], offset[1l]

PLOT, radonAngles, radonRadii, /XSTYLE, /YSTYLE, $
TITLE = 'Radon Transform', XTITLE = 'Theta', $
YTITLE = 'Rho', /NODATA, /NOERASE, /DEVICE, $

POSITION = [offset[0], offset[1l], $
displaySize[0] + offset[0], $
displaySize[l] + offset[1]], CHARSIZE = 1.5

The following figure shows the Hough and Radon transforms.

Hough Transform Raden Transform

0.0 0% 10 1.5 20 25 3.0 0.0 05 1.0 1.5 20 2.5 30
Thata

Theta

Figure 7-25: Hough (left) and Radon (right) Transforms of Image

8. Backproject the Hough and Radon transforms:

backprojectHough = HOUGH (houghTransform, /BACKPROJECT, $
RHO = houghRadii, THETA = houghAngles, $
NX = imageSize[0], NY = imageSizel[l])

backprojectRadon = RADON (radonTransform, /BACKPROJECT, $
RHO = radonRadii, THETA =

= radonAngles, $
NX = imageSize[0], NY = imageSizel[l])

Image Processing in IDL Transforming to and from the Hough and Radon Domains

164 Chapter 7: Transforming Between Domains

9. Create another window and display the original image with the Hough and
Radon backprojections:

WINDOW, 2, XSIZE = (3*displaySize[0]), $
YSIZE displaySize[l], $
TITLE 'Hough and Radon Backprojections'
TVSCL, CONGRID(image, displaySize[0], $

displaySize[1l]), O

TVSCL, CONGRID (backprojectHough, displaySize[0], $
displaySize[l]), 1

TVSCL, CONGRID (backprojectRadon, displaySize[0], $
displaySize[l]), 2

The following figure shows the original image and its Hough and Radon
transforms. These resulting images shows information is blurred when using
the Hough and Radon transformations.

Figure 7-26: Original Gated Blood Pool Image (left), Hough Backprojection
(center), and Radon Backprojection (right)

Finding Straight Lines with the Hough Transform

This example uses the Hough transform to find straight lines within an image. The
image comes from the rockland. png file found in the examples/data directory.
The image is a saturation composite of a 24 hour period in Rockland, Maine. A
saturation composite is normally used to highlight intensities, but the Hough
transform is used in this example to extract the power lines, which are straight lines.
The Hough transform is applied to the green band of the image. The results of the
transform are scaled to only include lineslonger than 85 pixels. The scaled results are
then backprojected by the Hough transform to produce an image of only the straight
power lines. Complete the following steps for a detailed description of the process.

Transforming to and from the Hough and Radon Domains Image Processing in IDL

Chapter 7: Transforming Between Domains 165

Example Code

See findinglineswithhough.pro intheexamples/doc/image subdirectory
of the IDL installation directory for code that duplicates this example. Run the
example procedure by entering findinglineswithhough at the IDL command
prompt or view thefilein an IDL Editor window by entering . EDIT
findinglineswithhough.pro.

1. Import the image from the rockland.png file:

file = FILEPATH('rockland.png', $
SUBDIRECTORY = ['examples', 'data'l)
image = READ_PNG (file)

2. Determine the size of the image:

imageSize = SIZE(image, /DIMENSIONS)
3. InitializeaTrueColor display:

DEVICE, DECOMPOSED = 1
4. Create awindow and display the original image:

WINDOW, 0, XSIZE = imageSize[l], YSIZE = imageSizel[2], $
TITLE = 'Rockland, Maine'

TV, image, TRUE = 1

Image Processing in IDL Transforming to and from the Hough and Radon Domains

javascript:doIDL("findinglineswithhough")
javascript:doIDL(".edit findinglineswithhough.pro")
javascript:doIDL(".edit findinglineswithhough.pro")

166 Chapter 7: Transforming Between Domains

The following figure shows the original image.

Figure 7-27: Image of Rockland, Maine

5. Usetheimage from green channel to provide an outline of shapes:
intensity = REFORM(imagel[l, *, *])

6. Determine the size of the intensity image derived from the green channel:
intensitySize = SIZE(intensity, /DIMENSIONS)

7. Threshold the intensity image to highlight the power lines:
mask = intensity GT 240

Note
The intensity image values range from 0 to 255. The threshold was derived

by iteratively viewing the intensity image at severa different values.

8. Initialize the remaining displays:

DEVICE, DECOMPOSED = 0
LOADCT, O

9. Create another window and display the masked image:

Transforming to and from the Hough and Radon Domains Image Processing in IDL

Chapter 7: Transforming Between Domains

WINDOW, 1,

intensitySizel[0], $
YSIZE intensitySize[l], $
TITLE

'Mask to Locate Power Lines'
TVSCL, mask

167
XSIZE

The following figure shows the mask of the original image.

Figure 7-28: Mask of Rockland Image
10. Transform the mask with the HOUGH function:

transform = HOUGH (mask, RHO

rho, THETA = theta)
11. Define the size and offset parameters for the transform displays:
displaySize [256, 256]
offset displaySize/3
12. Reverse the color table to clarify thelines:
TVLCT, red, green, blue, /GET
TVLCT, 255 - red, 255 - green, 255 - blue
13. Create another window and display the Hough transform with axes provided
by the PLOT procedure:
WINDOW, 2, XSIZE displaySize[0] + 1.5*offset[0], $
YSIZE = displaySize[l] + 1.5*offset[1l], $
Image Processing in IDL

Transforming to and from the Hough and Radon Domains

168 Chapter 7: Transforming Between Domains

TITLE = 'Hough Transform'

TVSCL, CONGRID(transform, displaySize[0], $
displaySize[l]), offset[0], offset[1l]

PLOT, theta, rho, /XSTYLE, /YSTYLE, $
TITLE = 'Hough Transform', XTITLE = 'Theta', $
YTITLE = 'Rho', /NODATA, /NOERASE, /DEVICE, $
POSITION = [offset[0], offset[1l], $
displaySize[0] + offset[0], $
displaySize[l] + offset[1]], CHARSIZE = 1.5, $
COLOR = !P.BACKGROUND

14. Scale the transform to abtain just the power lines, retaining only those lines
longer than 85 pixels:

transform = (TEMPORARY (transform) - 85) > 0

Thevalue of 85 comes from an estimate of the length of the power lineswithin
the original and intensity images.

15. Create another window and display the scaled Hough transform with axes
provided by the PLOT procedure:

WINDOW, 2, XSIZE = displaySize[0] + 1.5*offset[0], $
YSIZE = displaySize[l] + 1.5*offset[1l], $

TITLE = 'Scaled Hough Transform'

TVSCL, CONGRID(transform, displaySizel[0], $
displaySize[l]), offset[0], offset[1l]

PLOT, theta, rho, /XSTYLE, /YSTYLE, $
TITLE = 'Scaled Hough Transform', XTITLE = 'Theta', $
YTITLE = 'Rho', /NODATA, /NOERASE, /DEVICE, $

POSITION = [offset[0], offset[1l], $
displaySize[0] + offset[0], $

displaySize[l] + offset[1]], CHARSIZE = 1.5, $
COLOR = !P.BACKGROUND

The top image in the following figure shows the Hough transform of the
intensity image. This transform is masked to only include straight lines of
more than 85 pixels. The bottom image in the following figure shows the
results of this mask. Only the far left and right intersections are retained.

Transforming to and from the Hough and Radon Domains Image Processing in IDL

Chapter 7: Transforming Between Domains 169

Hough Transform
200
100 £
~100¢
—200F
0.0 05 1.0 1.5 2.0 25 30
Theta
Scaled Hough Transform
200 Remaining
Intersections]
100¢
—100F
—200F
0.0 05 1.0 1.5 2.0 25 30
Theta

Figure 7-29: The Hough Transform (top) and the Scaled Transform (bottom) of
the Masked Intensity Image
16. Backproject to compare with the original image:

backprojection = HOUGH (transform, /BACKPROJECT, $
RHO = rho, THETA = theta, $
NX = intensitySize[0], NY = intensitySizel[l])

Image Processing in IDL Transforming to and from the Hough and Radon Domains

170 Chapter 7: Transforming Between Domains

17. Create another window and display the resulting backprojection:

WINDOW, 4, XSIZE = intensitySize[0], $
YSIZE = intensitySize([l], $
TITLE = 'Resulting Power Lines'
TVSCL, backprojection

The following figure shows the resulting backprojection, which contains only
the power lines.

Figure 7-30: The Resulting Backprojection of the Scaled Hough Transform

Color Density Contrasting with the Radon Transform

This example uses the Radon transform to provide more contrast within an image
based on its color density. The image comes from the endocell . jpg filefound in
the examples/data directory. The image is a photomicrograph of cultured
endothelia cells. The edges (outlines) within the image are defined by the Roberts
filter. The Radon transform is then applied to the filtered image. The transform is
scaled to only include the values above the mean of the transform. The scaled results
are backprojected by the Radon transform. The resulting backprojection isused as a
mask on the original image. The fina resulting image shows more color contrast
along the edges of the cell nuclei within the image.

Transforming to and from the Hough and Radon Domains Image Processing in IDL

Chapter 7: Transforming Between Domains 171

Example Code
See contrastingcellswithradon.pro inthe examples/doc/image
subdirectory of the IDL installation directory for code that duplicates this example.
Run the example procedure by entering contrastingcellswithradon at the
IDL command prompt or view thefilein an IDL Editor window by entering . EDIT
contrastingcellswithradon.pro.

1. Import in the image from the endocell. jpg file:

file = FILEPATH('endocell.jpg', $
SUBDIRECTORY = ['examples', 'data'l)
READ_JPEG, file, endocellImage

2. Determinetheimage’'s size, but divide it by 4 to reduce the image:
imageSize = SIZE(endocellImage, /DIMENSIONS) /4
3. Resize theimage to a quarter of its original length and width:

endocellImage = CONGRID(endocellImage, $
imageSize[0], imageSize[l])

4. Initialize the display:

DEVICE, DECOMPOSED = 0
LOADCT, O

5. Create awindow and display the origina image:

WINDOW, 0, XSIZE = 2*imageSize[0], YSIZE = imageSizel[l], $
TITLE = 'Original (left) and Filtered (right)'
TV, endocellImage, 0

6. Filter the original image to clarify the edges of the cells and display it:

image = ROBERTS (endocellImage)
TVSCL, image, 1

Image Processing in IDL Transforming to and from the Hough and Radon Domains

javascript:doIDL("contrastingcellswithradon")
javascript:doIDL(".edit contrastingcellswithradon.pro")
javascript:doIDL(".edit contrastingcellswithradon.pro")

172 Chapter 7: Transforming Between Domains

The following figure shows the results of the edge detection filter.

Figure 7-31: Original Image (left) and the Resulting Edge-Filtered Image (right)

7. Transform the filtered image:
transform = RADON(image, RHO = rho, THETA = theta)
8. Definethe size and offset parameters for the transform displays:

displaySize = [256, 256]
offset = displaySize/3

9. Create another window and display the Radon transform with axes provided
by the PLOT procedure:

WINDOW, 1, XSIZE = displaySize[0] + 1.5*offset[0], $
YSIZE = displaySize[l] + 1.5*offset[1l], $
TITLE = 'Radon Transform'

TVSCL, CONGRID(transform, displaySize[0], $
displaySize[l]), offset[0], offset[1l]

PLOT, theta, rho, /XSTYLE, /YSTYLE, $
TITLE = 'Radon Transform', XTITLE = 'Theta', $
YTITLE = 'Rho', /NODATA, /NOERASE, /DEVICE, $
POSITION = [offset[0], offset[1l], S
displaySize[0] + offset[0], $

displaySize[l] + offset[1]], CHARSIZE = 1.5
10. Scale the transform to include only the density values above the mean of the
transform:

scaledTransform = transform > MEAN (transform)

11. Create another window and display the scaled Radon transform with axes
provided by the PLOT procedure:

WINDOW, 2, XSIZE = displaySize[0] + 1.5*offset[0], $
YSIZE = displaySize[l] + 1.5*offset[1l], $
TITLE = 'Scaled Radon Transform'

Transforming to and from the Hough and Radon Domains Image Processing in IDL

Chapter 7: Transforming Between Domains 173

TVSCL, CONGRID(scaledTransform, displaySize[0], $

displaySize[l]), offset[0], offset[1]

PLOT, theta, rho, /XSTYLE, /YSTYLE, $
TITLE = 'Scaled Radon Transform', XTITLE = 'Theta', $
YTITLE = 'Rho', /NODATA, /NOERASE, /DEVICE, $

POSITION = [offset[0], offset[1l], $
displaySize[0] + offset[0], $
displaySize[l] + offset[1]], CHARSIZE = 1.5

The following figure shows the original Radon transform of the edge-filtered
image and the resulting scaled transform. The high intensity values within the
diamond shape of the center of the transform represent high color density
within the filtered and original image. The transform is scaled to highlight this
segment of intersecting lines.

Image Processing in IDL Transforming to and from the Hough and Radon Domains

Chapter 7: Transforming Between Domains

174

Fadon Transform

Rho

0.0 05 1.0 1.5 20 25 30
Theta

Scaled Radan Transform

0.0 05 1.0 1.5 20 25 30
Theta

Figure 7-32: Radon Transform (top) and Scaled Transform (bottom)
of the Edge-Filtered Image

/BACKPROJECT, $

12. Backproject the scaled transform:
$

backprojection = RADON (scaledTransform,
NX = imageSize[O0],

rho, THETA=theta,

RHO =
imageSize[1l])

NY =
Image Processing in IDL

Transforming to and from the Hough and Radon Domains

Chapter 7: Transforming Between Domains 175

13. Create another window and display the backprojection:

WINDOW, 3, XSIZE = 2*imageSize[0], YSIZE = imageSize[l], $
TITLE = 'Backproject (left) and Final Result (right)'
TVSCL, backprojection, 0

14. Use the backprojection as a mask to provide a color density contrast of the
origina image:
constrastingImage = endocellImage*backprojection
15. Display the resulting contrast image:
TVSCL, constrastingImage, 1

The following figure shows the Radon backprojection and a combined image
of the original and the backprojection. The cell nuclei now have more contrast
than the rest of the image.

Figure 7-33: The Backprojection of the Radon Transform and the Resulting
Contrast Image

Image Processing in IDL Transforming to and from the Hough and Radon Domains

176 Chapter 7: Transforming Between Domains

Transforming to and from the Hough and Radon Domains Image Processing in IDL

Chapter 8

Contrasting and

Filtering

This chapter describes the following topics:

Overview of Contrasting and Filtering ... 178

ByteeScding 181
Working with Histograms 184
Filteringanimage 193

Image Processing in IDL

Smoothinganimage................. 209
Sharpeninganimage 218
DetectingEdges 222
RemovingNoise 225

177

178 Chapter 8: Contrasting and Filtering

Overview of Contrasting and Filtering

Contrast within an image is based on the brightness or darkness of a pixel in relation
to other pixels. Maodifying the contrast among neighboring pixels can enhance the
ability to extract information from the image. Operations such as noise removal and
smoothing decrease contrast and make neighboring pixel values more similar. Other
operations such as scaling pixel values, edge detection and sharpening increase
contrast to highlight specific image features.

A simple way to modify contrast is to scale the pixel values within an image. Within
IDL, the pixel values of displayed imagestypically range from 0 to 255. Byte-scaling
changes the range of values within an image to alinear progression from a minimum
of 0to amaximum of 255. For images with pixel values exceeding 255, byte-scaling
produces amore linear display with the minimum value as the darkest pixel and the
maximum value as the brightest pixel. For images with a smaller range in pixel
values, byte-scaling increases the contrast and brightens dark areas. See “Byte-
Scaling” on page 181 for more information on byte-scaling.

Contrast can also be increased to show more variations within uniform areas of the
image using histogram equalization operations. These operations modify the
distribution of pixel values within an image. See “Working with Histograms’ on
page 184 for more information on using histograms to modify contrast.

Filters provide another means of changing contrast within an image. A filter is
represented by akernel, which is an array that is multiplied and added to each pixel
(and its surrounding values) within an image. Examples of such filtersinclude low
pass, high pass, directional, and Laplacian filters. See “Filtering an Image” on

page 193 for more information on these filters. The following list introduces some of
the specific operations covered in this section:

e Low passfiltering - alow passfilter provides the basis for smoothing
operations. If an image contains too many variations to be able to determine
specific features, smoothing can decrease the contrast so that some areas
(especialy the background) will not distract from viewing other areas of the
image. See “ Smoothing an Image” on page 209 for more information on
smoothing.

« High passfiltering - ahigh passfilter provides the basis for sharpening
operations. Some variations within areas of an image are too slight, causing
some features to be indistinguishable from other features (usually the
background). Sharpening increases the contrast in these areas, alowing these
featuresto be clearly displayed. See “ Sharpening an Image’ on page 218 for
more information on sharpening.

Overview of Contrasting and Filtering Image Processing in IDL

Chapter 8: Contrasting and Filtering 179

Directional and Laplacian filters - these filters are the basis for edge
detection operations. Shapes within an image are distinguished by their edges,
which typically involve a sharp gradient. Edge detection increases the contrast
between the boundary of the shape and the adjoining areas. See “ Detecting
Edges’ on page 222 for more information on edge detection.

Windowing and adaptive filter s - more advanced filters are used to remove
noise from an image. The variation in values between the noise and the image
dataistypically extreme, which detracts from the image clarity. Decreasing the
contrast reduces the visible noise and allows the image to be properly viewed.
See “Removing Noise” on page 225 for more information on removing noise

within an image.

Note

In this book, Direct Graphics examples are provided by default. Object Graphics
examples are provided in cases where significantly different methods are required.

The following list introduces the image contrasting and filtering tasks and associated
IDL image routines covered in this chapter.

Type of Contrasts

or Eilters Routines Description
“Byte-Scaling” on BYTSCL Byte-scale the data
page 181 values of an imageto
produce a more
continuous display or to
increase its contrast.
“Working with HIST_EQUAL Use histogram
Histograms” on ADAPT _HIST EQUAL equalization to show
page 184 - - minor variationsin

uniform areas.

“Filtering an Image”
on page 193

CONVOL

Enhance contrast by
applying some basic
filters (low pass, high
pass, directional, and
Laplacian) to images.

Table 8-1: Image Contrasting and Filtering Tasks
and Related Routines

Image Processing in IDL

Overview of Contrasting and Filtering

180

Chapter 8: Contrasting and Filtering

Type of Contrasts

or Eilters Routines Description

“Smoothing anImage” | SMOOTH Smooth high variations

on page 209 MEDIAN within an image.

“Sharpening an CONVOL Sharpen an image by

Image” on page 218 decreasing too bright
pixels and increasing too
dark pixels.

“Detecting Edges’ on | ROBERTS Use the contrast within

page 222 SOBEL an image to detect the
possible edges of shapes.

“Removing Noise” on | HANNING Remove noise from an

page 225 LEEFILT image by either
windowing or using an
adaptive filter.

Table 8-1: Image Contrasting and Filtering Tasks
and Related Routines (Continued)
Note

This chapter uses data filesfrom the IDL. examples/data directory. Two files,
data.txt and index. txt, contain descriptions of the files, including array sizes.

Overview of Contrasting and Filtering

Image Processing in IDL

Chapter 8: Contrasting and Filtering 181
Byte-Scaling

The data values of some images may be greater than 255. When displayed with the
TV routine or the IDLgrImage object, the data values above 255 are wrapped around
the range of 0 to 255. Thistype of display may produce discontinuitiesin the
resulting image.

The display can be changed to not wrap around and appear more linear by byte-
scaling the image. The scaling processis linear with the minimum data value scaled
to 0 and the maximum data value scaled to 255. You can use the BY TSCL function to
perform this scaling process.

If the range of the pixel values within an image is less than O to 255, you can use the
BY TSCL function to increase the range from 0 to 255. This change will increase the
contrast within theimage by increasing the brightness of darker regions. Keywordsto
the BY TSCL function also allow you to decrease contrast by setting the highest value
of the image to less than 255.

Note
The BYTSCL function usually resultsin a different data type (byte) and range (0 to
255) from the original input data. When converting data with BY TSCL for display
purposes, you may want to keep your original data as a separate variable for
statistical and numerical analysis.

The following example shows how to use the BY TSCL function to scale data with
values greater than 255, producing a more uniform display. This example uses a
Magnetic Resonance Image (MRI) of a human brain within themr_brain.dcm file
inthe examples/data directory. The values of this data are unsigned integer and
range from 0 to about 800. Complete the following steps for a detailed description of
the process.

Example Code
Seebytescaling.pro inthe examples/doc/image subdirectory of the IDL
installation directory for code that duplicates this example. Run the example
procedure by entering bytescaling at the IDL command prompt or view thefile
inan IDL Editor window by entering .EDIT bytescaling.pro.

Image Processing in IDL Byte-Scaling

javascript:doIDL("bytescaling")
javascript:doIDL(".edit bytescaling.pro")

182 Chapter 8: Contrasting and Filtering

1. Import the image from themr_brain.dcn file:

file = FILEPATH('mr_brain.dcm', $
SUBDIRECTORY = ['examples', 'data'l)

image = READ_DICOM(file)

imageSize = SIZE(image, /DIMENSIONS)

2. Initialize the display:

DEVICE, DECOMPOSED = 0
LOADCT, 5

3. Create awindow and display the original image:

WINDOW, 0, XSIZE = imageSize[0], YSIZE = imageSizel[l], $
TITLE = 'Original Image'
TV, image

The following figure shows the original image.

Figure 8-1: Magnetic Resonance Image (MRI) of a Human Brain

4. Byte-scaletheimage:
scaledImage = BYTSCL (image)
5. Create another window and display the byte-scaled image:

WINDOW, 1, XSIZE = imageSize[0], YSIZE = imageSizel[l], $
TITLE = 'Byte-Scaled Image'
TV, scaledImage

Byte-Scaling Image Processing in IDL

Chapter 8: Contrasting and Filtering 183

The following figure shows the result of byte-scaling. Unlike the original image, the
byte-scal ed image accurately represents the maximum and minimum pixel values by
linearly adjusting the range for display.

Figure 8-2: Byte-Scaled MRI

Image Processing in IDL Byte-Scaling

184 Chapter 8: Contrasting and Filtering

Working with Histograms

The histogram of an image shows the number of pixelsfor each pixel value withinthe
range of the image. If the minimum value of the image is 0 and the maximum value
of theimageis 255, the histogram of the image shows the number of pixelsfor each
value ranging between and including 0 and 255. Peaks in the histogram represent
more common values within the image that usually consist of nearly uniform regions.
Valleys in the histogram represent less common values. Empty regions within the
histogram indicate that no pixels within the image contain those values.

The following figure shows an example of a histogram and its related image. The
most common value in thisimage is 180, composing the background of the image.
Although the background appears nearly uniform, it contains many small variations.

WAV

0 50 100 150 200 250
Histagram of Image

Figure 8-3: Example of a Histogram (left) and Its Related Image (right)

The contrast of these variations can be increased by equalizing the image's
histogram. Either the image’s color table or the image itself can be equalized based
on the information within the image's histogram. This section shows how to enhance
the contrast within an image by modifying theimage itself. See“H_EQ _CT” (IDL
Reference Guide) for more information on enhancing contrast by modifying the color
table of an image using the image’s histogram information.

During histogram equalization, the values occurring in the empty regions of the
histogram are redistributed equally among the peaks and valleys. This process creates
intensity gradients within these regions (replacing nearly uniform values), thus
highlighting minor variations.

IDL contains the ability to perform histogram equalization and adaptive histogram
egualization. The following sections show how to use these forms of histogram
egualization to modify images within IDL:

Working with Histograms Image Processing in IDL

Chapter 8: Contrasting and Filtering 185

* “Equalizing with Histograms’
e “Adaptive Equalizing with Histograms” on page 188

Equalizing with Histograms

You can use the HIST_EQUAL function to perform basic histogram equalization
within IDL. Unlike histogram equalization methods performed on color tables, the
HIST_EQUAL function results in a modified image, which has a different histogram
than the original image. The resulting image shows more variations (increased
contrast) within uniform areas than the original image.

The following example applies histogram egualization to an image of mineral
deposits to revea previously indistinguishable features. This example usesthe
mineral.png filein the examples/data directory. Complete the following steps
for adetailed description of the process.

Example Code
Seeequalizing.pro inthe examples/doc/image subdirectory of the IDL
installation directory for code that duplicates this example. Run the example
procedure by entering equalizing at the IDL command prompt or view thefilein
an IDL Editor window by entering .EDIT equalizing.pro.

1. Import the image and color table from themineral . png file:

file = FILEPATH('mineral.png', $
SUBDIRECTORY = ['examples', 'data'])

image = READ_PNG(file, red, green, blue)

imageSize = SIZE(image, /DIMENSIONS)

2. Initialize the display:

DEVICE, DECOMPOSED = 0
TVLCT, red, green, blue

3. Create awindow and display the original image with its color table:

WINDOW, 0, XSIZE = imageSize[0], YSIZE = imageSizel[l], $
TITLE = 'Original Image'
TV, image

Image Processing in IDL Working with Histograms

javascript:doIDL("equalizing")
javascript:doIDL(".edit equalizing.pro")

186 Chapter 8: Contrasting and Filtering

The following figure shows the original image.

Figure 8-4: The Mineral Image and Its Related Color Table

4. Create another window and display the histogram of the original image:

WINDOW, 1, TITLE = 'Histogram of Image'
PLOT, HISTOGRAM (image), /XSTYLE, /YSTYLE, $
TITLE = 'Mineral Image Histogram',6 $

XTITLE = 'Intensity Value',K $
YTITLE = 'Number of Pixels of That Value'

The following figure shows the original image's histogram.

Mineral Imoge Histogrom
T T

2000 —
1500 - _

1000 -

Mumber of Pivels of That value

500 —

N

0 50 100 180 200 250
Intensity Yalue

Figure 8-5: Histogram of the Original Image

Working with Histograms Image Processing in IDL

Chapter 8: Contrasting and Filtering 187

5. Histogram equalize the image:
equalizedImage = HIST_EQUAL (image)
6. Create another window and display the equalized image:

WINDOW, 2, XSIZE = imageSize[0], YSIZE = imageSizel[l], $
TITLE = 'Equalized Image'
TV, equalizedImage

The following figure shows the results of the histogram equalization. Small
variations within the uniform regions are now much more noticeable.

Figure 8-6: Equalized Mineral Image

7. Create another window and display the histogram of the equalized image:

WINDOW, 3, TITLE = 'Histogram of Equalized Image'
PLOT, HISTOGRAM (equalizedImage), /XSTYLE, /YSTYLE, $
TITLE = 'Equalized Image Histogram', $
XTITLE = 'Intensity Value',K $
YTITLE = 'Number of Pixels of That Value'

Image Processing in IDL Working with Histograms

188 Chapter 8: Contrasting and Filtering

The following figure shows the modified image's histogram. The resulting
histogram is now more uniform than the original histogram.

Equalized Image Histogram

2000 - -
1500 -

1060 —

Mumber of Pivels of That value

200

Intensity Yalue

Figure 8-7: Histogram of the Equalized Image

Adaptive Equalizing with Histograms

Adaptive histogram equalization involves applying equalization based on the local
region surrounding each pixel. Each pixel ismapped to an intensity proportional to its
rank within the surrounding neighborhood. This type of equalization also tends to
reduce the disparity between peaks and valleys within the image's histogram.

You can use the ADAPT_HIST_EQUAL function to perform the adaptive histogram
equalization process within IDL. Like the HIST _EQUAL function, the
ADAPT_HIST_EQUAL function results in a modified image, which has a different
histogram than the original image.

The following example applies adaptive histogram equalization to an image of
mineral depositsto reveal previously indistinguishable features. This example uses a
themineral .png fileinthe examples/data directory. Complete the following
steps for a detailed description of the process.

Example Code
See adaptiveequalizing.pro inthe examples/doc/image subdirectory of
the IDL installation directory for code that duplicates this example. Run the
example procedure by entering adaptiveequalizing at the IDL command

Working with Histograms Image Processing in IDL

javascript:doIDL("adaptiveequalizing")

Chapter 8: Contrasting and Filtering 189

prompt or view thefilein an IDL Editor window by entering . EDIT
adaptiveequalizing.pro.

1. Import the image and color table from themineral . png file:

file = FILEPATH('mineral.png', $
SUBDIRECTORY = ['examples', 'data'])

image = READ_PNG(file, red, green, blue)

imageSize = SIZE(image, /DIMENSIONS)

2. Initialize the display:

DEVICE, DECOMPOSED = 0
TVLCT, red, green, blue

3. Create awindow and display the original image with its color table:

WINDOW, 0, XSIZE = imageSize[0], YSIZE = imageSizel[l], $
TITLE = 'Original Image'
TV, image

The following figure shows the original image.

Figure 8-8: The Mineral Image and Its Related Color Table

4. Create another window and display the histogram of the original image:

WINDOW, 1, TITLE = 'Histogram of Image'
PLOT, HISTOGRAM (image), /XSTYLE, /YSTYLE, $
TITLE = 'Mineral Image Histogram',6 $

XTITLE = 'Intensity Value', $
YTITLE = 'Number of Pixels of That Value'

Image Processing in IDL Working with Histograms

javascript:doIDL(".edit adaptiveequalizing.pro")
javascript:doIDL(".edit adaptiveequalizing.pro")

190 Chapter 8: Contrasting and Filtering

The following figure shows the resulting display.

Mineral Imoge Histogrom
T T

2000 —
1500 - _

1000 -

Mumber of Pivels of That value

SN

0 50 100 180 200 250
Intensity Yalue

Figure 8-9: Histogram of the Original Image

5. Apply adaptive histogram equalization to the image:
equalizedImage = ADAPT HIST_EQUAL (image)
6. Create another window and display the equalized image:

WINDOW, 2, XSIZE = imageSize[0], YSIZE = imageSizel[l], $
TITLE = 'Adaptive Equalized Image'
TV, equalizedImage

Working with Histograms Image Processing in IDL

Chapter 8: Contrasting and Filtering 191

The following figure shows the results of adaptive histogram equalization. All
the variations within the image are now noticeable.

Figure 8-10: Adaptive Equalized Mineral Image

7. Create another window and display the histogram of the equalized image:

WINDOW, 3, TITLE = 'Histogram of Adaptive Equalized Image'
PLOT, HISTOGRAM (equalizedImage), /XSTYLE, /YSTYLE, $
TITLE = 'Adaptive Equalized Image Histogram',6 $
XTITLE = 'Intensity Value',K $
YTITLE = 'Number of Pixels of That Value'

Image Processing in IDL Working with Histograms

192 Chapter 8: Contrasting and Filtering

The following figure shows the modified image's histogram. The resulting
histogram contains no empty regions and fewer extreme peaks and valleysthan
the original image.

Adoptive Equolized Image Histogram

3o 1

250 1

Mumber of Pivels of That volue

180

0 50 100 180 200 250
Intensity Yalue

Figure 8-11: Histogram of the Adaptive Equalized Image

Working with Histograms Image Processing in IDL

Chapter 8: Contrasting and Filtering 193

Filtering an Image

Image filtering is useful for many applications, including smoothing, sharpening,
removing noise, and edge detection. A filter is defined by akernel, which isa small
array applied to each pixel and its neighbors within an image. In most applications,
the center of the kernel is aligned with the current pixel, and is a square with an odd
number (3, 5, 7, etc.) of elementsin each dimension. The process used to apply filters
to an image is known as convolution, and may be applied in either the spatial or
frequency domain. See Chapter 7, “ Overview of Transforming Between Image
Domains’ for more information on image domains.

Within the spatial domain, the first part of the convolution process multiplies the
elements of the kernel by the matching pixel values when the kernel is centered over
apixel. The elements of the resulting array (which is the same size as the kernel) are
averaged, and the original pixel value is replaced with this result. The CONVOL
function performs this convolution process for an entire image.

Within the frequency domain, convolution can be performed by multiplying the FFT
(Fast Fourier Transform) of the image by the FFT of the kernel, and then
transforming back into the spatial domain. The kernel is padded with zero values to
enlargeit to the same size as the image before the forward FFT is applied. These
types of filters are usually specified within the frequency domain and do not need to
betransformed. IDL’s DIST and HANNING functions are examples of filters already
transformed into the frequency domain. See “ Windowing to Remove Noise” on
page 225 for more information on these types of filters.

Thefollowing examples in this section will focus on some of the basic filters applied
within the spatial domain using the CONVOL function:

e “Low PassFiltering” on page 194
e “High Pass Filtering” on page 197
« “Directional Filtering” on page 201
» “Laplacian Filtering” on page 204

Sincefilters are the building blocks of many image processing methods, these
examples merely show how to apply filters, as opposed to showing how a specific
filter may be used to enhance a specific image or extract a specific shape. This basic
introduction provides the information necessary to accomplish more advanced
image-specific processing.

Image Processing in IDL Filtering an Image

194 Chapter 8: Contrasting and Filtering

Note
The following filters mentioned are not the only filters used in image processing.
Most image processing textbooks contain more varieties of filters.

Low Pass Filtering

A low passfilter isthe basis for most smoothing methods. An image is smoothed by
decreasing the disparity between pixel values by averaging nearby pixels (see
“Smoothing an Image” on page 209 for more information).

Using alow pass filter tends to retain the low frequency information within an image

while reducing the high frequency information. An exampleis an array of ones
divided by the number of elements within the kernel, such as the following 3 by 3

kerndl:
1/91/91/9
1/91/91/9
1/91/91/9
Note

The above array is an example of one possible kernel for alow passfilter. Other
filters may include more weighting for the center point, or have different smoothing
in each dimension.

The following example shows how to use IDL's CONVOL function to smooth an
aerial view of New York City within the nyny . dat fileinthe examples/data
directory. Complete the following steps for a detailed description of the process.

Example Code
See lowpassfiltering.pro inthe examples/doc/image subdirectory of the
IDL instalation directory for code that duplicates this example. Run the example
procedure by entering 1owpassfiltering at the IDL command prompt or view
thefilein an IDL Editor window by entering .EDIT lowpassfiltering.pro.

1. Import the image from the nyny . dat file:

file = FILEPATH('nyny.dat', $

SUBDIRECTORY = ['examples', 'data'])
imageSize = [768, 512]
image = READ_BINARY (file, DATA_DIMS = imageSize)

Filtering an Image Image Processing in IDL

javascript:doIDL("lowpassfiltering")
javascript:doIDL(".edit lowpassfiltering.pro")

Chapter 8: Contrasting and Filtering 195

2. Crop theimageto focusin on the bridges:

croppedSize = [96, 96]
croppedImage = image[200: (croppedSize[0] - 1) + 200, $
180: (croppedSize[1l] - 1) + 180]

3. Initialize the display:

DEVICE, DECOMPOSED = 0
LOADCT, O
displaySize = [256, 256]

4. Create awindow and display the cropped image:

WINDOW, 0, XSIZE = displaySize[0], YSIZE = displaySize[l], S
TITLE = 'Cropped New York Image'

TVSCL, CONGRID (croppedImage, displaySize[0], $
displaySize[1l])

The following figure shows the cropped section of the original image.

Figure 8-12: Cropped New York Image

5. Create akernel for alow passfilter:

kernelSize = [3, 3]
kernel = REPLICATE((l./(kernelSize[0]*kernelSize[l])), $
kernelSize[0], kernelSizel[l])

6. Apply thefilter to the image:

filteredImage = CONVOL (FLOAT (croppedImage), kernel, $
/CENTER, /EDGE_TRUNCATE)

Image Processing in IDL Filtering an Image

196 Chapter 8: Contrasting and Filtering

7. Create another window and display the resulting filtered image:

WINDOW, 1, XSIZE = displaySize[0], YSIZE = displaySize[l], $
TITLE = 'Low Pass Filtered New York Image'

TVSCL, CONGRID(filteredImage, displaySize[0], $
displaySize[l])

The following figure shows the resulting display. The high frequency pixel
values have been blurred as aresult of the low passfilter.

Figure 8-13: Low Pass Filtered New York Image

8. Addtheorigina and the filtered image together to show how the filter effects
the image.
WINDOW, 2, XSIZE = displaySize[0], YSIZE = displaySize[l], S
TITLE = 'Low Pass Combined New York Image'

TVSCL, CONGRID (croppedImage + filteredImage, $
displaySize[0], displaySizel[l])

Filtering an Image Image Processing in IDL

Chapter 8: Contrasting and Filtering 197

The following figure shows the resulting display. In the resulting combined
image, the structures within the city are not as pixelated asin the original
image. The image is smoothed (blurred) to appear more continuous.

Figure 8-14: Low Pass Combined New York Image

High Pass Filtering

A high passfilter is the basis for most sharpening methods. An image is sharpened
when contrast is enhanced between adjoining areas with little variation in brightness
or darkness (see “ Sharpening an Image” on page 218 for more detailed information).

A high pass filter tendsto retain the high frequency information within an image
while reducing the low frequency information. The kernel of the high passfilter is
designed to increase the brightness of the center pixel relative to neighboring pixels.
The kernel array usually contains a single positive value at its center, whichis
completely surrounded by negative values. The following array is an example of a3
by 3 kernel for ahigh passfilter:

-1/9-1/9 -1/9
-1/9 8/9 -1/9
-1/9-1/9 -1/9

Note
The above array is an example of one possible kernel for a high pass filter. Other
filters may include more weighting for the center point.

Image Processing in IDL Filtering an Image

198 Chapter 8: Contrasting and Filtering

The following example shows how to use IDL’'s CONVOL function with a3 by 3
high passfilter to sharpen an aeria view of New York City within the nyny . dat file
inthe examples/data directory. Complete the following steps for a detailed
description of the process.

Example Code
Seehighpassfiltering.prointheexamples/doc/image subdirectory of the
IDL instalation directory for code that duplicates this example. Run the example
procedure by entering highpassfiltering at the IDL command prompt or view
thefilein an IDL Editor window by entering .EDIT highpassfiltering.pro.

1. Import the image from the nyny . dat file:

file = FILEPATH('nyny.dat', $

SUBDIRECTORY = ['examples', 'data'])
imageSize = [768, 512]
image = READ_BINARY (file, DATA_DIMS = imageSize)

2. Crop theimageto focusin on the bridges:

croppedSize = [96, 96]
croppedImage = image[200: (croppedSize[0] - 1) + 200, $
180: (croppedSize[1l] - 1) + 180]

3. Initialize the display:

DEVICE, DECOMPOSED = 0
LOADCT, O
displaySize = [256, 256]

4. Create awindow and display the cropped image:

WINDOW, 0, XSIZE = displaySize[0], YSIZE = displaySize[l], S
TITLE = 'Cropped New York Image'

TVSCL, CONGRID (croppedImage, displaySize[0], $
displaySize[1])

Filtering an Image Image Processing in IDL

javascript:doIDL("highpassfiltering")
javascript:doIDL(".edit highpassfiltering.pro")

Chapter 8: Contrasting and Filtering 199

The following figure shows the cropped section of the original image.

Figure 8-15: Cropped New York Image

5. Create akernel for ahigh passfilter:

kernelSize = [3, 3]
kernel = REPLICATE(-1., kernelSize[0], kernelSize[l])
kernel[1, 1] = 8.

6. Apply thefilter to the image:

filteredImage = CONVOL (FLOAT (croppedImage), kernel, $
/CENTER, /EDGE_TRUNCATE)

7. Create another window and display the resulting filtered image:

WINDOW, 1, XSIZE = displaySize[0], YSIZE = displaySize[l], $
TITLE = 'High Pass Filtered New York Image'

TVSCL, CONGRID(filteredImage, displaySize[0], $
displaySize[l])

Image Processing in IDL Filtering an Image

200 Chapter 8: Contrasting and Filtering

The following figure shows the results of applying the high passfilter. The
high frequency information is retained.

Figure 8-16: High Pass Filtered New York Image

8. Addtheorigina and the filtered image together to show how the filter effects
the image.

WINDOW, 2, XSIZE = displaySize[0], YSIZE = displaySize[l], $
TITLE = 'High Pass Combined New York Image'

TVSCL, CONGRID (croppedImage + filteredImage, $
displaySize[0], displaySizel[l])

The following figure shows the resulting display. In the resulting combined
image, the structures within the city are more pixelated than in the original
image. The pixels are highlighted and appear more discontinuous, exposing
the three-dimensional nature of the structures within the image.

Figure 8-17: High Pass Combined New York Image

Filtering an Image Image Processing in IDL

Chapter 8: Contrasting and Filtering 201

Directional Filtering

A directional filter formsthe basis for some edge detection methods. An edge within
an image is visible when alarge change (a steep gradient) occurs between adjacent
pixel values. This change in valuesis measured by the first derivatives (often referred
to as slopes) of an image. Directional filters can be used to compute the first
derivatives of an image (see “ Detecting Edges’ on page 222 for more information on
edge detection).

Directional filters can be designed for any direction within agiven space. For images,
x- and y-directional filters are commonly used to compute derivatives in their
respective directions. The following array is an example of a 3 by 3 kernel for an x-
directional filter (the kernel for the y-direction is the transpose of this kernel):

-101
-101
-101

Note
The above array is an example of one possible kernel for a x-directional filter. Other
filters may include more weighting in the center of the nonzero columns.

The following example shows how to use IDL’'s CONVOL function to determine the
first derivatives of an image in the x-direction. The resulting derivatives are then
scaled to just show negative, zero, and positive slopes. This example uses the aerial
view of New York City within the nyny . dat fileinthe examples/data directory.
Complete the following steps for a detailed description of the process.

Example Code
Seedirectionfiltering.pro inthe examples/doc/image subdirectory of
the IDL installation directory for code that duplicates this example. Run the
example procedure by entering directionfiltering at the IDL command
prompt or view thefilein an IDL Editor window by entering . EDIT
directionfiltering.pro.

1. Import the image from the nyny . dat file:

file = FILEPATH('nyny.dat', $

SUBDIRECTORY = ['examples', 'data'l)
imageSize = [768, 512]
image = READ_BINARY (file, DATA_DIMS = imageSize)

Image Processing in IDL Filtering an Image

javascript:doIDL("directionfiltering")
javascript:doIDL(".edit directionfiltering.pro")
javascript:doIDL(".edit directionfiltering.pro")

202 Chapter 8: Contrasting and Filtering

2. Crop theimageto focusin on the bridges:

croppedSize = [96, 96]
croppedImage = image[200: (croppedSize[0] - 1) + 200, $
180: (croppedSize[1l] - 1) + 180]

3. Initialize the display:

DEVICE, DECOMPOSED = 0
LOADCT, O
displaySize = [256, 256]

4. Create awindow and display the cropped image:

WINDOW, 0, XSIZE = displaySize[0], YSIZE = displaySize[l], S
TITLE = 'Cropped New York Image'

TVSCL, CONGRID (croppedImage, displaySize[0], $
displaySize[1l])

The following figure shows the cropped section of the original image.

Figure 8-18: Cropped New York Image

5. Create akernel for an x-directional filter:

kernelSize = [3, 3]

kernel = FLTARR (kernelSize[0], kernelSize[l])
kernel [0, *] = -1.

kernel[2, *] = 1.

6. Apply thefilter to the image:

filteredImage = CONVOL (FLOAT (croppedImage), kernel, $
/CENTER, /EDGE_TRUNCATE)

Filtering an Image Image Processing in IDL

Chapter 8: Contrasting and Filtering 203

7. Create another window and display the resulting filtered image:

WINDOW, 1, XSIZE = displaySize[0], YSIZE = displaySize[l], $
TITLE = 'Direction Filtered New York Image'

TVSCL, CONGRID(filteredImage, displaySize[0], $
displaySize[l])

The resulting image shows some edge information. The most noticeable edge
isseen asa“shadow” for each bridge. Thisinformation representsthe slopesin
the x-direction of the image. The filtered image can then be scaled to highlight
these slopes.

Figure 8-19: Direction Filtered New York Image

8. Create another window and display negative slopes as black, zero slopes as
gray, and positive slopes as white:
WINDOW, 2, XSIZE = displaySize[0], YSIZE = displaySize[l], $
TITLE = 'Slopes of Direction Filtered New York Image'
TVSCL, CONGRID(-1 > FIX(filteredImage/50) < 1,
displaySizel[0], $
displaySize[1l])

The following figure shows the negative s opes (black areas), zero slopes (gray
areas), and positive slopes (white areas) produced by the x-directional filter.

Image Processing in IDL Filtering an Image

204 Chapter 8: Contrasting and Filtering

The adjacent black and white areas show edges in the x-direction, such as
aong the bridge closest to the right side of the image.

Figure 8-20: Slopes of Direction Filtered New York Image
Laplacian Filtering

A Laplacian filter forms another basis for edge detection methods. A Laplacian filter
can be used to compute the second derivatives of an image, which measure therate at
which thefirst derivatives change. This helpsto determine if a change in adjacent
pixel valuesis an edge or a continuous progression (see “ Detecting Edges’ on

page 222 for more information on edge detection).

Kernels of Laplacian filters usually contain negative valuesin a cross pattern (similar
to aplussign), which is centered within the array. The corners are either zero or
positive values. The center value can be either negative or positive. The following
array isan example of a3 by 3 kernel for aLaplacian filter:

0-10
14 -1
0-10

Note
The above array is an example of one possible kernel for a Laplacian filter. Other
filters may include positive, nonzero vaues in the corners and more weighting in
the centered cross pattern.

Filtering an Image Image Processing in IDL

Chapter 8: Contrasting and Filtering 205

The following example shows how to use IDL’'s CONVOL function with a3 by 3
Laplacian filter to determine the second derivatives of an image. This type of
information is used within edge detection processes to find ridges. This example uses
an aerial view of New York City within the nyny . dat filein the examples/data
directory. Complete the following steps for a detailed description of the process.

Example Code
See laplacefiltering.pro inthe examples/doc/image subdirectory of the
IDL instalation directory for code that duplicates this example. Run the example
procedure by entering 1aplacefiltering at the IDL command prompt or view
thefilein an IDL Editor window by entering .EDIT laplacefiltering.pro.

1. Import the image from the nyny . dat file:

file = FILEPATH('nyny.dat', $

SUBDIRECTORY = ['examples', 'data'l)
imageSize = [768, 512]
image = READ_BINARY (file, DATA_DIMS = imageSize)

2. Crop theimageto focusin on the bridges:

croppedSize = [96, 96]
croppedImage = image[200: (croppedSize[0] - 1) + 200, $
180: (croppedSize[1l] - 1) + 180]

3. Initialize the display:

DEVICE, DECOMPOSED = 0
LOADCT, O
displaySize = [256, 256]

4. Create awindow and display the cropped image:

WINDOW, 0, XSIZE = displaySize[0], YSIZE = displaySize[l], $
TITLE = 'Cropped New York Image'

TVSCL, CONGRID (croppedImage, displaySize[0], $
displaySize[l])

Image Processing in IDL Filtering an Image

javascript:doIDL("laplacefiltering")
javascript:doIDL(".edit laplacefiltering.pro")

206 Chapter 8: Contrasting and Filtering

The following figure shows the cropped section of the original image.

Figure 8-21: Cropped New York Image

5. Create akernel of aLaplacian filter:

kernelSize = [3, 3]

kernel = FLTARR (kernelSize[0], kernelSize[l])
kernel[1l, *] = -1.

kernel[*, 1] = -1.

kernel[l, 1] = 4.

6. Apply thefilter to the image:

filteredImage = CONVOL (FLOAT (croppedImage), kernel, $
/CENTER, /EDGE_TRUNCATE)

7. Create another window and display the resulting filtered image:

WINDOW, 1, XSIZE = displaySize[0], YSIZE = displaySize[l], S
TITLE = 'Laplace Filtered New York Image'

TVSCL, CONGRID(filteredImage, displaySize[0], $
displaySize[1])

Filtering an Image Image Processing in IDL

Chapter 8: Contrasting and Filtering 207

The following figure contains positive and negative second derivative
information. The positive values represent depressions (valleys) and the
negative values represent ridges.

Figure 8-22: Laplacian Filtered New York Image

8. Create another window and display only the negative values (ridges) within

the image:
WINDOW, 2, XSIZE = displaySize[0], YSIZE = displaySize[l], $
TITLE = 'Negative Values of Laplace Filtered New York
Image'

TVSCL, CONGRID(filteredImage < 0, $
displaySize[0], displaySizel[l])

Image Processing in IDL Filtering an Image

208 Chapter 8: Contrasting and Filtering

The following figure shows the negative values produced by the Laplacian
filter. The most noticeable ridges in this result are the medians within the wide
boulevards of the city.

e

Figure 8-23: Negative Values of Laplacian Filtered New York Image

Filtering an Image Image Processing in IDL

Chapter 8: Contrasting and Filtering 209

Smoothing an Image

Smoothing is often used to reduce noise within an image or to produce a less
pixelated image. Most smoothing methods are based on low passfilters. See “Low
Pass Filtering” on page 194 for more information.

Smoothing is also usually based on a single value representing the image, such asthe
average value of the image or the middle (median) value. The following examples
show how to smooth using average and middle values:

e “Smoothing with Average Values’
e “Smoothing with Median Values’ on page 213

Smoothing with Average Values

The following example shows how to use the SMOOTH function to smooth an image
with a moving average. Surfaces of the original and smooth images are displayed to
show how discontinuous values are made more continuous. This example uses the
photomicrograph image of human red blood cells contained within the

rbcells. jpg filein the examples/data directory. Complete the following steps
for a detailed description of the process.

Example Code
See smoothingwithsmooth.pro intheexamples/doc/image subdirectory of
the IDL installation directory for code that duplicates this example. Run the
example procedure by entering smoothingwithsmooth at the IDL command
prompt or view thefilein an IDL Editor window by entering . EDIT
smoothingwithsmooth.pro.

1. Import theimage fromthe rbcells. jpg file:

file = FILEPATH('rbcells.jpg', $
SUBDIRECTORY = ['examples', 'data'l)

READ_JPEG, file, image

imageSize = SIZE(image, /DIMENSIONS)

2. Initialize the display:

DEVICE, DECOMPOSED = 0
LOADCT, O

3. Create awindow and display the origina image:

WINDOW, 0, XSIZE = imageSize[0], YSIZE = imageSizel[l], $
TITLE = 'Original Image'

Image Processing in IDL Smoothing an Image

javascript:doIDL("smoothingwithsmooth")
javascript:doIDL(".edit smoothingwithsmooth.pro")
javascript:doIDL(".edit smoothingwithsmooth.pro")

210 Chapter 8: Contrasting and Filtering

TV, image

The following figure shows the original image. This image contains many
varying pixel values within the background.

Figure 8-24: Original Red Blood Cells Image

4. Create another window and display the origina image as a surface:

WINDOW, 1, TITLE = 'Original Image as a Surface'
SHADE_SURF, image, /XSTYLE, /YSTYLE, CHARSIZE = 2., $
XTITLE = 'Width Pixels',6 $
YTITLE = 'Height Pixels', $
ZTITLE = 'Intensity Values',6 $
TITLE = 'Red Blood Cell Image'

Smoothing an Image Image Processing in IDL

Chapter 8: Contrasting and Filtering 211

The following figure shows the surface of the original image. Thisimage
contains many discontinuous values shown as sharp peaks (spikes) in the
middle range of values.

Infenaly Vaues

Figure 8-25: Surface of Original Red Blood Cells Image

5. Smooth the image with the SMOOTH function, which uses the average value
of each group of pixels affected by the 5 by 5 kernel applied to the image:

smoothedImage = SMOOTH (image, 5, /EDGE_TRUNCATE)

The width argument of 5 isused to specify that a5 by 5 smoothing kernel isto
be used.

6. Create another window and display the smoothed image as a surface:

WINDOW, 2, TITLE = 'Smoothed Image as a Surface'
SHADE_SURF, smoothedImage, /XSTYLE, /YSTYLE, CHARSIZE = 2., $

XTITLE = 'Width Pixels',6 $
YTITLE = 'Height Pixels', $
ZTITLE = 'Intensity Values',6 $
TITLE = 'Smoothed Cell Image'

Image Processing in IDL Smoothing an Image

212 Chapter 8: Contrasting and Filtering

The following figure shows the surface of the smoothed image. The sharp
peaks in the original image have been decreased.

Infenaly Vaues

Figure 8-26: Surface of Average-Smoothed Red Blood Cells Image

7. Create another window and display the smoothed image:

WINDOW, 3, XSIZE = imageSize[0], YSIZE = imageSize[l], $
TITLE = 'Smoothed Image'
TV, smoothedImage

Smoothing an Image Image Processing in IDL

Chapter 8: Contrasting and Filtering 213

The following figure shows the smoothed image. L ess variations between
pixel values occur within the background of the resulting image.

Figure 8-27: Average-Smoothed Red Blood Cells Image

Smoothing with Median Values

The following example shows how to use IDL's MEDIAN function to smooth an
image by median values. Surfaces of the original and smooth images are displayed to
show how discontinuous values are made more continuous. This example uses the
photomicrograph image of human red blood cells contained within the

rbcells. jpg filein the examples/data directory. Complete the following steps
for adetailed description of the process.

Example Code
See smoothingwithmedian.pro intheexamples/doc/image subdirectory of
the IDL installation directory for code that duplicates this example. Run the
example procedure by entering smoothingwithmedian at the IDL command
prompt or view the filein an IDL Editor window by entering . EDIT
smoothingwithmedian.pro.

1. Import the image from the rbcells. jpg file:

file = FILEPATH('rbcells.jpg', $
SUBDIRECTORY = ['examples', 'data'l)

Image Processing in IDL Smoothing an Image

javascript:doIDL("smoothingwithmedian")
javascript:doIDL(".edit smoothingwithmedian.pro")
javascript:doIDL(".edit smoothingwithmedian.pro")

214 Chapter 8: Contrasting and Filtering

READ_JPEG, file, image
imageSize = SIZE(image, /DIMENSIONS)

2. Initialize the display:
DEVICE, DECOMPOSED = 0
LOADCT, O
3. Create awindow and display the original image:

WINDOW, 0, XSIZE = imageSize[0], YSIZE = imageSize[l], $
TITLE = 'Original Image'
TV, image
The following figure shows the original image. This image contains many
varying pixel values within the background.

Figure 8-28: Original Red Blood Cells Image

4. Create another window and display the origina image as a surface:

WINDOW, 1, TITLE = 'Original Image as a Surface'
SHADE_SURF, image, /XSTYLE, /YSTYLE, CHARSIZE = 2., $
XTITLE = 'Width Pixels', $

YTITLE = 'Height Pixels', $
ZTITLE = 'Intensity Values',6 $
TITLE = 'Red Blood Cell Image'

Smoothing an Image Image Processing in IDL

Chapter 8: Contrasting and Filtering 215

The following figure shows the surface of the original display. Thisimage
contains many discontinuous values shown as sharp peaks (spikes) in the
middle range of values.

Infenaly Vaues

Figure 8-29: Surface of Original Red Blood Cells Image

5. Smooth the image with the MEDIAN function, which uses the middle value of
each group of pixels affected by the 5 by 5 kernel applied to the image:

smoothedImage = MEDIAN (image, 5)
6. Create another window and display the smoothed image as a surface:

WINDOW, 2, TITLE = 'Smoothed Image as a Surface'
SHADE_SURF, smoothedImage, /XSTYLE, /YSTYLE, CHARSIZE = 2., $

XTITLE = 'Width Pixels', $
YTITLE = 'Height Pixels', $
ZTITLE = 'Intensity Values',6 $
TITLE = 'Smoothed Cell Image'

Image Processing in IDL Smoothing an Image

216 Chapter 8: Contrasting and Filtering

The following figure shows the smoothed surface. The sharp peaks in the
original image are decreased by the MEDIAN function.

Infenaly Vaues

Figure 8-30: Surface of Middle-Smoothed Red Blood Cells Image

7. Create another window and display the smoothed image:

WINDOW, 3, XSIZE = imageSize[0], YSIZE = imageSize[l], $
TITLE = 'Smoothed Image'
TV, smoothedImage

Smoothing an Image Image Processing in IDL

Chapter 8: Contrasting and Filtering 217

The following figure shows the results of applying the median filter. Less
variations occur within the background of the resulting image, yet feature
edges remain clearly defined.

Figure 8-31: Middle-Smoothed Red Blood Cells Image

Image Processing in IDL Smoothing an Image

218 Chapter 8: Contrasting and Filtering

Sharpening an Image

Sharpening an image increases the contrast between bright and dark regions to bring
out features.

The sharpening process is basically the application of a high passfilter to an image.
The following array is akernel for acommon high pass filter used to sharpen an

image:
-1/9-1/9 -1/9
-1/9 1 -1/9
-1/9-1/9 -1/9
Note

The above array is an example of one possible kernel for a sharpening filter. Other
filters may include more weighting for the center point.

As mentioned in the filtering section of this chapter, filters can be applied to images
in IDL with the CONVOL function. See “High Pass Filtering” on page 197 for more
information on high passfilters.

The following example shows how to use IDL’'s CONVOL function and the above
high pass filter kerndl to sharpen an image. This example uses the Magnetic
Resonance Image (MRI) of a human knee contained within themr_knee.dem filein
the examples/data directory. Within the origina knee MRI, some informationis
nearly as dark as the background. Thisimage is sharpened to display these dark areas
with improved contrast. Complete the following steps for adetailed description of the
process.

Example Code
See sharpening.pro intheexamples/doc/image subdirectory of the IDL
installation directory for code that duplicates this example. Run the example
procedure by entering sharpening at the IDL command prompt or view the file
inan IDL Editor window by entering .EDIT sharpening.pro.

1. Import the image from the mr_knee.dcm file:

file = FILEPATH('mr_knee.dcm', $
SUBDIRECTORY = ['examples', 'data'l)

image = READ_DICOM(file)

imageSize = SIZE(image, /DIMENSIONS)

Sharpening an Image Image Processing in IDL

javascript:doIDL("sharpening")
javascript:doIDL("sharpening")
javascript:doIDL(".edit sharpening.pro")

Chapter 8: Contrasting and Filtering

2. Initialize the display:

DEVICE, DECOMPOSED = 0
LOADCT, O

3. Create awindow and display the origina image:

WINDOW, 0, XSIZE = imageSize[0], YSIZE = imageSizel[l], $
TITLE = 'Original Knee MRI'
TVSCL, image

The following figure shows the original image.

Figure 8-32: Original Knee MRI

4. Create akernel for a sharpening (high pass) filter:

kernelSize = [3, 3]
kernel = REPLICATE(-1./9., kernelSize[0], kernelSize[l])
kernel([1l, 1] = 1.

5. Apply thefilter to the image:

filteredImage = CONVOL (FLOAT (image), kernel, $
/CENTER, /EDGE_TRUNCATE)

219

Image Processing in IDL Sharpening an Image

220 Chapter 8: Contrasting and Filtering

6. Create another window and display the resulting filtered image:

WINDOW, 1, XSIZE = imageSize[0], YSIZE = imageSizel[l], $
TITLE = 'Sharpen Filtered Knee MRI'
TVSCL, filteredImage

The following figure shows the results of applying the sharpening (high pass)
filter. Pixelsthat differ dramatically in contrast with surrounding pixels are
brightened.

Figure 8-33: Sharpen Flltered Knee MRI

7. Create another window and display the combined images:

WINDOW, 2, XSIZE = imageSize[0], YSIZE = imageSize[l], $
TITLE = 'Sharpened Knee MRI'
TVSCL, image + filteredImage

Sharpening an Image Image Processing in IDL

Chapter 8: Contrasting and Filtering 221

The following figure shows the combination of the sharpened and original
images. Thisimage is sharper, containing more information within several
regions, especially the tips of the bones.

Figure 8-34: Sharpened Knee MRI

Image Processing in IDL Sharpening an Image

222 Chapter 8: Contrasting and Filtering

Detecting Edges

Detecting edges is another way to help extract features. Many edge detection
methods use either directional or Laplacian filters. See “ Directional Filtering” on
page 201 and “Laplacian Filtering” on page 204 for more information on directional
and Laplacian filters.

IDL contains the following edge detection routines:

» EDGE_DOG » EMBOSS

* LAPLACIAN * PREWITT

* ROBERTS » SHIFT_DIFF
* SOBEL

See the individud filter descriptionsin the IDL Reference Guide for more
information on these operators. Morphological operators are used for more complex
edge detection. See “ Detecting Edges of Image Objects’ in Chapter 9 for more
information on these operators.

The results of these edge detection routines can be added or subtracted from the
origina image to enhance the contrast of the edges within that image. Edge detection
results are also used to calculate masks. See “Masking Images’ in Chapter 4 for more
information on masks.

Edge Detection Example

The following example shows how to use each of the seven functions to detect edges
within an image. This example uses the aerial view of New York City within the
nyny .dat fileinthe examples/data directory. Complete the following steps for a
detailed description of the process.

Example Code
Thefilefor thisexample, detecting_edges_doc.pro, islocated in the
examples/doc/image subdirectory of the IDL distribution. Run the example
procedure by entering detecting edges_doc at the IDL command prompt or
view thefilein an IDL Editor window by entering . EDIT
detecting_edges_doc.pro.

1. Read inimage datafrom the binary file nyny.dat

Detecting Edges Image Processing in IDL

javascript:doIDL("detecting_edges_doc")
javascript:doIDL("detecting_edges_doc")
javascript:doIDL(".edit detecting_edges_doc.pro")
javascript:doIDL(".edit detecting_edges_doc.pro")

Chapter 8: Contrasting and Filtering 223

file = FILEPATH('nyny.dat', SUBDIRECTORY = ['examples',6$
'data'l)
imageSize = [768, 512]

image = READ_BINARY (file, DATA_DIMS = imageSize)

2. Crop the image to focus on the bridges

croppedSize = [96, 96]
croppedImage = image[200: (croppedSize[0] - 1) + 200, $
180: (croppedSize[1l] - 1) + 180]

3. Specify the size of the final displayed images
displaySize = [150, 150]

4. Resizetheimageto thefinal display size, apply various detection filters, then
display using ilmage

croppedImage = CONGRID (croppedImage, displaySizel[0],$
displaySize[1])

IIMAGE, croppedImage, DIMENSIONS=[700,700], $
VIEW_GRID=[4,2], $
VIEW_TITLE='Original', /NO_SAVEPROMPT, $
TITLE='Comparison of Edge Detection Filters'

robertsfilteredImage = ROBERTS (croppedImage)

IIMAGE, RobertsFilteredImage, /VIEW_NEXT , /OVERPLOT, $
VIEW_TITLE='ROBERTS Filter'

SobelFilteredImage = SOBEL (croppedImage)

IIMAGE, SobelFilteredImage, /VIEW_NEXT, /OVERPLOT, $
VIEW_TITLE='SOBEL Filter'

PrewittFilteredImage = PREWITT (croppedImage)

ITMAGE, PrewittFilteredImage, /VIEW_NEXT, /OVERPLOT, $
VIEW_TITLE='PREWITT Filter'

ShiftDiffFilteredimage = SHIFT_DIFF (croppedImage)

ITMAGE, ShiftDiffFilteredimage, /VIEW_NEXT, /OVERPLOT, $
VIEW_TITLE='SHIFT_DIFF Filter'

EdgeDogFilteredimage = EDGE_DOG (croppedImage)

ITIMAGE, EdgeDogFilteredimage, /VIEW_NEXT, /OVERPLOT, $
VIEW_TITLE='EDGE_DOG Filter'

Image Processing in IDL Detecting Edges

224

Chapter 8: Contrasting and Filtering
LaplacianFilteredImage

LAPLACIAN (croppedImage)
IIMAGE, LaplacianFilteredImage, /VIEW_NEXT, /OVERPLOT, $
VIEW_TITLE='LAPLACIAN Filter'

EmbossFilteredImage

EMBOSS (croppedImage)

IIMAGE, EmbossFilteredImage,

/VIEW_NEXT,
VIEW_TITLE='EMBOSS Filter'

/OVERPLOT, $

&l Comparison of Edge Detection Filters

Fle Edt Insert Operations Window Help

Dlz@E] o= 4[=e] x|offaln] &f o= AlNo|o|s|e

A Image |

ROls O| Q| &|@

Pirel Location:
ROBERTS Filter SOBEL Filter PREWITT Fiter ~~ ,B218
- o 175

Oridfinal

Pixel Scale:
®100% v:100%

Edit Paletic..
Channel [Giay =

I= | Link A1l

o

Manf255
SHIFT_DIFF Filter = EDGE_DOG Filter = LAPLACIAN Filter

Vi

[699.5E]

Figure 8-35: Each Filter Applied to the New York Image

Detecting Edges

Image Processing in IDL

Chapter 8: Contrasting and Filtering 225

Removing Noise

When a device (such as a camera or scanner) captures an image, the device
sometimes adds extraneous noise to the image. This noise must be removed from the
image for other image processing operations to return valuable results. Some noise
can simply be removed by smoothing an image or masking it within the frequency
domain, but most noise requires more involved filtering, such as windowing or
adaptive filters. The following example shows how to use windowing and adaptive
filters to remove noise from an image within IDL:

e “Windowing to Remove Noise”

* “LeeFiltering to Remove Noise” on page 229
Windowing to Remove Noise

Within the frequency domain, afilter is applied to an image by multiplying the FFT
of that image by the FFT of thefilter. When the FFT of aimageis multiplied by the
FFT of afilter to perform convolution, this process is known as windowing.

The DIST and HANNING functions are examples of windowing filters already
transformed into the frequency domain. Windowing with the DIST function has the
same effect as applying a high pass filter. The high frequency information is retained,
while the effect of the low frequency information is decreased. In contrast, the
HANNING function retains the low frequency information. The results of the
HANNING function are similar to amask used to remove noise in an image. The
HANNING function can be used to create either a Hanning or Hamming window.
Although the DIST and the HANNING functions perform different filtering tasks,
these filters are applied the same way, so only one exampleis provided in this
section.

Windowing is different than simply using amask within the frequency domain. Using
amask omitsinformation within the image, while windowing retains the information,
but decreasesits effect on the image. See Chapter 7, “Removing Noise with the FFT”
for more information on using a mask to remove noise from an image.

The following example shows how to use the HANNING function when windowing
an image to remove background noise. This example uses the first image within the
abnorm.dat filein the examples/data directory. Complete the following steps
for a detailed description of the process.

Example Code
See removingnoisewithhanning.pro inthe examples/doc/image
subdirectory of the IDL installation directory for code that duplicates this example.

Image Processing in IDL Removing Noise

226

Chapter 8: Contrasting and Filtering
Run the example procedure by entering removingnoisewithhanning at the

IDL command prompt or view thefilein an IDL Editor window by entering . EDIT
removingnoisewithhanning.pro.
1

Import the image from the abnorm. dat file:

file = FILEPATH('abnorm.dat',6 $
SUBDIRECTORY = ['examples', 'data'])
imageSize = [64, 64]
image READ_BINARY (file, DATA_DIMS = imageSize)
2. Initialize adisplay size parameter to resize the image when displaying it:
displaySize = 2*imageSize
3. Initialize the display:

DEVICE, DECOMPOSED = 0
LOADCT, O

4. Create awindow and display the original image:
WINDOW, O,

XSIZE = displaySize[0], $
YSIZE displaySize[l], $
TITLE = 'Original Image'

TVSCL, CONGRID (image, displaySize[0],

displaySize[1l])
The following figure shows the original image.

Figure 8-36: Original Gated Blood Pool Image

5. Determinethe forward Fourier transformation of the image:
transform = SHIFT (FFT (image),
(imageSize[1]/2))

(imageSize[0]/2),

$
Removing Noise

Image Processing in IDL

javascript:doIDL("removenoisewithhanning")
javascript:doIDL(".edit removingnoisewithhanning.pro")
javascript:doIDL(".edit removingnoisewithhanning.pro")

Chapter 8: Contrasting and Filtering 227

6. Create another window and display the power spectrum:

WINDOW, 1, TITLE = 'Surface of Forward FFT'
SHADE_SURF, (2.*ALOG10(ABS(transform))), /XSTYLE, /YSTYLE, $
/ZSTYLE, TITLE = 'Power Spectrum',6 $

XTITLE = 'Mode', YTITLE = 'Mode', $
ZTITLE = 'Amplitude', CHARSIZE = 1.5

The following figure shows the power spectrum of the original image. Noise
within theimage is shown as small peaks.

strum
ar SPE

P

Figure 8-37: Power Spectrum of the Gated Blood Pool Image

7. Use aHanning mask to filter out the noise:

mask = HANNING (imageSize[0], imageSizel[l])
maskedTransform = transform*mask

8. Create another window and display the masked power spectrum:

WINDOW, 2, TITLE = 'Surface of Filtered FFT'
SHADE_SURF, (2.*ALOG10 (ABS (maskedTransform))), $

/XSTYLE, /YSTYLE, /ZSTYLE, TITLE = 'Masked Power
Spectrum', $

XTITLE = 'Mode', YTITLE = 'Mode', $

ZTITLE = 'Amplitude', CHARSIZE = 1.5

Image Processing in IDL Removing Noise

228

Chapter 8: Contrasting and Filtering

The following figure shows the results of applying the Hanning window. The
Hanning window gradually smooths the high frequency peaks within the
image.

Figure 8-38: Masked Power Spectrum of the Gated Blood Pool Image

9. Apply theinverse transformation to the masked frequency domain image:

inverseTransform = FFT(SHIFT (maskedTransform,
(imageSize[0]/2),

$
(imageSize[1]/2)), /INVERSE)
10. Create another window and display the results of the inverse transformation:
WINDOW, 3, XSIZE = displaySize[0], $
YSIZE = displaySize[l], S
TITLE =

'Hanning Filtered Image'

TVSCL, CONGRID (REAL_PART (inverseTransform), $
displaySize[0], displaySizel[l])

Removing Noise

Image Processing in IDL

Chapter 8: Contrasting and Filtering 229

The following figure shows the resulting display. Visible noise within the
image has been reduced, while the valuable image data has been retained.

Figure 8-39: Resulting Hanning Filtered Image

Lee Filtering to Remove Noise

Unlike the Hanning window, the Lee filter is convolved within the spatial domain.
The Leefilter is an adaptive filter, which changes according to the local statistics of
the current pixel. The LEEFILT routine applies the Lee filter to an image to remove
background noise.

The following example shows how to use the LEEFILT function to remove
background noise from an image. This example uses the first image within the
abnorm.dat filein the examples/data directory. Complete the following steps
for a detailed description of the process.

Example Code
See removingnoisewithleefilt.pro inthe examples/doc/image
subdirectory of the IDL installation directory for code that duplicates this example.
Run the example procedure by entering removingnoisewithleefilt atthe
IDL command prompt or view thefilein an IDL Editor window by entering . EDIT
removingnoisewithleefilt.pro.

1. Import the image from the abnorm. dat file:

file = FILEPATH('abnorm.dat', $

SUBDIRECTORY = |['examples', 'data'l)
imageSize = [64, 64]
image = READ_BINARY (file, DATA_DIMS = imageSize)

Image Processing in IDL Removing Noise

javascript:doIDL("removingnoisewithleefilt")
javascript:doIDL("removingnoisewithleefilt")
javascript:doIDL(".edit removingnoisewithleefilt.pro")
javascript:doIDL(".edit removingnoisewithleefilt.pro")

Chapter 8: Contrasting and Filtering

230
Initialize adisplay size parameter to resize the image when displaying it:

2.

= 2*imageSize

displaySize
Initialize the display:
DEVICE, DECOMPOSED

LOADCT, O
4. Create awindow and display the original image:

3.
=0

WINDOW, 0, XSIZE = displaySize[0], $
YSIZE = displaySize[l], $
TITLE = 'Original Image'
displaySize[0], displaySize[l])

TVSCL, CONGRID (image,
The following figure shows the original image.

Figure 8-40: Original Gated Blood Pool Image

5. Apply the Leefilter to theimage:

LEEFILT (image, 1)

filteredImage =

6. Create another window and display the Lee filtered image:
= displaySize[0], $

WINDOW, 1, XSIZE =
YSIZE = displaySize[l], S
'Lee Filtered Image'
$

TITLE =
displaySize[0],

TVSCL, CONGRID(filteredImage,
displaySize[1])

Image Processing in IDL

Removing Noise

Chapter 8: Contrasting and Filtering 231

The following figure shows the results of applying the Lee filter, which
adaptively smooths areas that contains noise.

Figure 8-41: Lee Filtered Gated Blood Pool Image

Image Processing in IDL Removing Noise

232 Chapter 8: Contrasting and Filtering

Removing Noise Image Processing in IDL

Chapter 9

Extracting and
Analyzing Shapes

This chapter describes using morphological operationsin conjunction with image analysis routines
to extract and analyze image elements. This chapter includes the following topics:

Overview of Extracting and Analyzing Image

Shapes ... 234
Determining Structuring Element Shapes and
SIZES . i 237
Determining Intensity Values for Threshold
andStretch 240
Eroding and Dilating Image Objects 243
Smoothing with MORPH_OPEN 248
Smoothing with MORPH_CLOSE 251

Image Processing in IDL

Detecting Peaks of Brightness 254
Creating Image Object Boundaries 257
Selecting Specific Image Objects.. 261
Detecting Edges of Image Objects 266
Creating DistanceMaps 269
Thinning ImageObjects 272

Combining Morphological Operations. .. 277
Analyzing Image Shapes 282

233

234 Chapter 9: Extracting and Analyzing Shapes

Overview of Extracting and Analyzing Image
Shapes

Morphological image processing operations reveal the underlying structures and
shapes within binary and grayscale images, clarifying basic image features. While
individual morphological operations perform simple functions, they can be combined
to extract specific information from an image. Morphological operations often
precede more advanced pattern recognition and image analysis operations such as
segmentation. Shape recognition routines commonly include image thresholding or
stretching to separate foreground and background image features. See “ Determining
Intensity Values for Threshold and Stretch” on page 240 for tips on how to produce
the desired results.

This chapter also provides examples of more advanced image analysis routines that
return information about specific image elements. One example identifies unique
regions within an image and the other finds the area of a specific image feature. See
“Analyzing Image Shapes’ on page 282 for more information.

Note
In this book, Direct Graphics examples are provided by default. Object Graphics
examples are provided in cases where significantly different methods are required.

Applying a Morphological Structuring Element to an
Image

Morphological operations apply a structuring element or morphological mask to an
image. A structuring element that is applied to an image must be 2 dimensional,
having the same number of dimensions asthe array to which it is applied. A
morphological operation passes the structuring element, of an empirically determined
size and shape, over an image. The operation compares the structuring element to the
underlying image and generates an output pixel based upon the function of the
morphologica operation. The size and shape of the structuring element determines
what is extracted or deleted from an image. In general, smaller structuring elements
preserve finer details within an image than larger elements. For more information on
selecting and creating a structuring element, see “ Determining Structuring Element
Shapes and Sizes’ on page 237.

Morphological operations can be applied to either binary or grayscale images. When
applied to a binary image, the operation returns pixels that are either black, having a
logical value of 0, or white, having alogical value of 1. Each image pixel and its

Overview of Extracting and Analyzing Image Shapes Image Processing in IDL

Chapter 9: Extracting and Analyzing Shapes 235

neighboring pixels are compared against the structuring element to determine the
pixel’s value in the output image. With grayscale images, pixel values are determined
by taking a neighborhood minimum or neighborhood maximum value (as required by
the morphological process). The structuring element provides the definition of the
shape of the neighborhood.

The following table introduces image processing tasks and associated IDL image
processing routines covered in this chapter.

Task Routine(s) Description

“Eroding and ERODE Reduce the size of objectsin
Dilating Image relation to their background.
Objscztjson DILATE Expand the size of objectsin
Pag ' relation to their background.

“Smoothing with | MORPH_OPEN Apply an erosion operation
MORPH_OPEN” followed by adilation
on page 248. operation to a binary or

grayscale image.

“Smoothing with | MORPH_CLOSE Apply adilation operation
MORPH_CLOSE” followed by an erosion
on page 251. operation to a binary or

grayscale image.

“Detecting Peaks | MORPH_TOPHAT Retain only the brightest pixels
of Brightness’ on within a grayscale image.
page 254.

“Creating Image | WATERSHED Detect boundaries between
ObjectBoundaries’ similar regionsin agrayscale
on page 257. image.

“Selecting Specific | MORPH_HITORMISS Use “hit” and “miss’

Image Objects’ on structuresto identify image
page 261. elements that meet the

specified conditions.

Table 9-1: Shape Extraction and Analysis Tasks and Routines

Image Processing in IDL Overview of Extracting and Analyzing Image Shapes

236

Chapter 9:

Extracting and Analyzing Shapes

Task

Routine(s)

Description

“Detecting Edges
of Image Objects’
0N page 266.

MORPH_GRADIENT

Subtract an eroded version of a
grayscale image from adilated
version of the image,
highlighting edges.

“Creating Distance

MORPH_DISTANCE

Estimate for each binary

Maps’ on foreground pixel the distance
page 269. to the nearest background
pixel, using a given norm.
“Thinning Image | MORPH_THIN Subtract hit-or-miss results
Objects’ on from abinary image. Repeated
page 272. thinning results in pixel-wide

linear representations of image
objects.

“Anayzing Image
Shapes’ on
page 282.

LABEL_REGION

Identify and assign index
numbers to discrete regions
within abinary image.

CONTOUR

Create a contour plot and
extract information about
specific contours.

Note

Table 9-1: Shape Extraction and Analysis Tasks and Routines (Continued)

For an example that uses a combination of morphological operations to remove
bridges from the waterways of New York, see “Combining M orphological
Operations’ on page 277.

Overview of Extracting and Analyzing Image Shapes

Image Processing in IDL

Chapter 9: Extracting and Analyzing Shapes 237

Determining Structuring Element Shapes and

Sizes

Determining the size and shape of a structuring element is largely an empirical
process. However, the overall selection of a structuring element depends upon the
geometric shapes you are attempting to extract from the image data. For example, if
you are dealing with biological or medical images, which contain few straight linesor
sharp angles, acircular structuring element is an appropriate choice. When extracting
shapes from geographic aerial images of a city, a square or rectangular element will
alow you to extract angular features from the image.

While most examples in this chapter use simple structuring elements, you may need
to create several different elements or different rotations of asingular element in
order to extract the desired shapes from your image. For example, if you wish to
extract the rectangular roads from an aerial image, theinitial rectangular element will
need to be rotated a number of ways to account for multiple orientations of the roads
within the image.

The size of the structuring element depends upon what features you wish to extract
from the image. Larger structuring elements preserve larger features while smaller
elements preserve the finer detail s of image features.

Image Processing in IDL Determining Structuring Element Shapes and Sizes

238 Chapter 9: Extracting and Analyzing Shapes

Thefollowing table shows how to easily create simple disk-shaped, square, rectangle,
diagonal and custom structuring elements using IDL. The visual representations of
the structures, shown in the right-hand column, indicate that the shape of each binary
structuring element is defined by foreground pixels having avalue of one.

IDL Code For Structuring Element Shapes Examples

Disk-Shaped Structuring Element
Use SHIFT in conjunction with DIST to create the disk shape.

radius = 3

strucElem = SHIFT(DIST(2*radius+1l), radius, $
radius) LE radius

Change radius to ater the size of the structuring element.

coo—ooo
= =]
= e =1
= =1
= =1
coo—ooo

Square Structuring Element
Use DIST to define the square array. Todd

side = 3
strucElem = DIST(side) LE side
Change side to alter the size of the structuring element.

Vertical Rectangular Structuring Element
Use BY TARR to define the initial array. 1

0o
strucElem = BYTARR(3,3, /NOZERO) 1 g g
strucElem [0,*] =1
Create a2 x 3 structure by adding strucElem([1,*] = 1.

Horizontal Rectangular Structuring Element
Use BYTARR to define theinitial array.

strucElem = BYTARR(3,3, /NOZERO) 000
strucElem [*,0] =1

Create a3 x 2 structure by adding, strucElem([*,1] = 1.

—
—_
—_

Table 9-2: Creating Various Structuring Elements Shapes with IDL

Determining Structuring Element Shapes and Sizes Image Processing in IDL

Chapter 9: Extracting and Analyzing Shapes 239

IDL Code For Structuring Element Shapes Examples

Diagonal Structuring Element
Use IDENTITY to create theinitial array.

strucElem = BYTE (IDENTITY (3)) I} 1 I}
Note - BY TE isused to create a byte array, consistent with the o 0
other structuring elements.

—_
=
)]

Irregular Structuring Elements

Define custom arrays to create irregular structuring elements
or aseries of rotations of a single structuring element.

.8

strucElem = [

=1 T o
cmmoos—o
comsbhaoo
coo—a—m—oo
coh—naoo
chascom—o
Liooooaa

vy r Uy Ur r U

element is covered in “ Thinning Image Objects’ on page 272.

Table 9-2: Creating Various Structuring Elements Shapes with IDL

Image Processing in IDL Determining Structuring Element Shapes and Sizes

240 Chapter 9: Extracting and Analyzing Shapes

Determining Intensity Values for Threshold
and Stretch

Thresholding and stretching images separate foreground pixels from background
pixels and can be performed before or after applying amorphological operation to an
image. While a threshold operation produces a binary image and a stretch operation
produces a scaled, grayscale image, both operations rely upon the definition of an
intensity value. This intensity value is compared to each pixel value within the image
and an output pixel isgenerated based upon the conditions stated within the threshold
or stretch statement.

Intensity histograms provide a means of determining useful intensity values as well
as determining whether or not an imageis a good candidate for thresholding or
stretching. A histogram containing definitive peaks of intensities indicates that an
image's foreground and background features can be successfully separated. A
histogram containing connected, graduated ranges of intensitiesindicatestheimageis
likely a poor candidate for thresholding or stretching.

A

a 50 100 180 200 250 I0¢ 0 a0 100 180 200 250 I0¢

Good Candidate Poor Candidate

Figure 9-1: Determining Appropriateness of Images for Thresholding or
Stretching Using Intensity Histograms

Note
To quickly view the intensity histogram of an image, create a window and use
PLQOT in conjunction with HISTOGRAM, entering PL.OT, HISTOGRAM (image)
where image denotes the image for which you wish to view a histogram.

Determining Intensity Values for Threshold and Stretch Image Processing in IDL

Chapter 9: Extracting and Analyzing Shapes 241

Thresholding an Image

Thresholding outputs a binary image as determined by athreshold intensity and one
of the relational operators. EQ, NE, GE, GT, LE, or LT. In a statement containing a
relational operator, thresholding compares each pixel in the original imageto a
threshold intensity. The output pixels (comprising the binary image) are assigned a
value of 1 (white) when the relational statement is true and O (black) when the
statement is false.

The following figure shows an intensity histogram of an image containing mineral
crystals. The histogram indicates that the image can be successfully thresholded since
there are definitive peaks of intensities. Also shown in the following figure, a
statement such as img LE 50 produces animage where all pixels lessthan the
threshold intensity value of 50 are assigned aforeground pixel value of 1 (white). The
statement, img GE 50 produces a contrasting image where all original pixels values
greater than 50 are assigned a foreground pixel value (white).

Intensity Histogram of Original Image

50[}05—
2000

100

’Qf/ff

Original Image

Figure 9-2: Image Thresholding

Image Processing in IDL Determining Intensity Values for Threshold and Stretch

242

Chapter 9: Extracting and Analyzing Shapes

Stretching an Image

Stretching an image (also know as scaling) creates a grayscale image, scaling arange
of selected pixel values across al possible intensities. When using TV SCL or
BYTSCL in conjunction with the > and < operators, arange of pixels defined by the
intensity value and operator are scaled across the entire intensity range, (0 to 255).

image = img < 50 — All pixel values greater than 50 are assigned avalue
of 50, now the maximum pixel value (white). Applying TVSCL or BY TSCL
stretches the remaining pixel values across all possible intensities (0 to 255).

image = img < 190 — All pixel values greater than 190 are assigned a
value of 190, now the maximum pixel value (white). Applying TVSCL or
BYTSCL stretches the remaining pixel values across all possible intensities
(0to 255).

image = img > 150 < 190 — Usingtwo intensity values, extract asingle
peak of values shown in the histogram, all values less than 150 are assigned a
minimum pixel value (black) and al vaues greater than 190 are assigned a
maximum pixel value (white). Applying TVSCL or BY TSCL stretches the
remaining pixel values across al possible intensities (0 to 255).

The following figure shows the results of displaying each image stretching statement
using TVSCL, image:

Original Image and Intensity Histogram

3000 -

‘r ; o

img > 150 < 190

Figure 9-3: Image Stretching

Determining Intensity Values for Threshold and Stretch Image Processing in IDL

Chapter 9: Extracting and Analyzing Shapes 243

Eroding and Dilating Image Objects

The basic morphological operations, erosion and dilation, produce contrasting results
when applied to either grayscale or binary images. Erosion shrinks image objects
while dilation expands them. The specific actions of each operation are covered in the
following sections,

Characteristics of Erosion

e Erosion generally decreases the sizes of objects and removes small anomalies
by subtracting abjects with aradius smaller than the structuring element.

e With grayscale images, erosion reduces the brightness (and therefore the size)
of bright objects on a dark background by taking the neighborhood minimum
when passing the structuring element over the image.

» With binary images, erosion completely removes objects smaller than the
structuring element and removes perimeter pixels from larger image objects.

Characteristics of Dilation

« Dilation generally increases the sizes of objects, filling in holes and broken
areas, and connecting areas that are separated by spaces smaller than the size
of the structuring element.

« With grayscale images, dilation increases the brightness of objects by taking
the neighborhood maximum when passing the structuring element over the
image.

« With binary images, dilation connects areas that are separated by spaces

smaller than the structuring element and adds pixels to the perimeter of each
image object.

Applying Erosion and Dilation

The following example applies erosion and dilation to grayscale and binary images.
When using erosion or dilation, avoid the generation of indeterminate values for
objects occurring along the edges of the image by padding the image, as shown in the
following example. Complete the following steps for a detailed description of the
process.

Image Processing in IDL Eroding and Dilating Image Objects

244 Chapter 9: Extracting and Analyzing Shapes

Example Code
Seemorpherodedilate.pro inthe examples/doc/image subdirectory of the
IDL installation directory for code that duplicates this example. Run the example
procedure by entering morpherodedilate atthe DL command prompt or view
thefilein an IDL Editor window by entering . EDIT morpherodedilate.pro.

Note
This example uses afilefrom the examples/demo/demodata directory of your
installation. If you have not already done so, you will need to install “IDL Demos”
from your product CD-ROM to install the demo data file needed for this example.

1. Preparethedisplay device:

DEVICE, DECOMPOSED = 0, RETAIN = 2
2. Load agrayscale color table:

LOADCT, O

3. Sdlect and read in the image file. Use the GRAY SCALE keyword to
READ_JPEG to open the grayscale image:

file = FILEPATH('pollens.jpg', $
SUBDIRECTORY = ['examples', 'demo',6 'demodata'])
READ_JPEG, file, img, /GRAYSCALE

4. Get the size of the image:
dims = SIZE(img, /DIMENSION)

5. Define the structuring element. A radius of 2 resultsin a structuring element
near the size of the specks of background noise. This radius a so affects only
the edges of the larger objects (whereas alarger radius would cause significant
distortion of all image features):

radius = 2

6. Create adisk-shaped structuring element that corresponds to the shapes
occurring within the image:

strucElem = SHIFT(DIST(2*radius+1l), radius, radius) LE radius

Tip
Enter PRINT, strucElem to view the structure created by the previous
Statement.

7. Add aborder to the image to avoid generating indeterminate values when
passing the structuring element over objects along the edges of an image. If the

Eroding and Dilating Image Objects Image Processing in IDL

javascript:doIDL("morpherodedilate")
javascript:doIDL("bytescaling")
javascript:doIDL(".edit morpherodedilate.pro")

Chapter 9: Extracting and Analyzing Shapes 245

starting origin of the structuring element is not specified in the call to ERODE,
the origin defaults to one half the width of the structuring element. Therefore,
creating a border equal to one half of the structuring element width (equal to
the radius) is sufficient to avoid indeterminate values. Create padded images
for both the erode operation (using the maximum array value for the border),
and the dilate operation (using the minimum array value for the border) as
follows:

erodeImg = REPLICATE (MAX (img), dims[0]1+2, dims[1]+2)
erodeImg [1,1] = img

dilateImg = REPLICATE (MIN(img), dims[0]+2, dims[1]+2)
dilateImg [1,1] = img

Note
Padding is only necessary when accurate edge values are important. Adding
apad equal to more that one half the width of the structuring element does
not negatively effect the morphological operation, but does minutely add to
the processing time. The padding can be removed from the image after
applying the morphological operation and before displaying the image if
desired.

8. Get the size of either of the padded images, create a window and display the
origina image:

padDims = SIZE(erodeImg, /DIMENSIONS)

WINDOW, 0, XSIZE = 3*padDims[0], YSIZE = padDims[1l], $
TITLE = "Original, Eroded and Dilated Grayscale Images"

TVSCL, img, O

9. Apply the ERODE function to the grayscale image using the GRAY keyword
and display the image:

erodeImg = ERODE (erodeImg, strucElem, /GRAY)
TVSCL, erodeImg, 1

10. For comparison, apply DILATE to the same image and display it:

dilateImg = DILATE(dilateImg, strucElem, /GRAY)
TVSCL, dilateImg, 2

Image Processing in IDL Eroding and Dilating Image Objects

246 Chapter 9: Extracting and Analyzing Shapes

The following image displays the effects of erosion (middle) and dilation
(right). Erosion removes pixels from perimeters of objects, decreases the
overall brightness of the grayscale image and removes objects smaller than the
structuring element. Dilation adds pixelsto perimeters of objects, brightensthe
image, and fillsin holes smaller than the structuring element as shown in the
following figure.

Figure 9-4: Original (left), Eroded (center) and Dilated (right) Grayscale Images

11. Create awindow and use HISTOGRAM in conjunction with PLOT, displaying
an intensity histogram to help determine the threshold intensity value:

WINDOW, 1, XSIZE = 400, YSIZE = 300
PLOT, HISTOGRAM (img)

Note
Using an intensity histogram as a guide for determining threshold valuesis
described in the section, “Determining Intensity Values for Threshold and
Stretch” on page 240.

12. To compare the effects of erosion and dilation on binary images, create a
binary image, retaining pixels with values greater than or equal to 120:

img = img GE 120

13. Create padded binary images for the erode and dilation operations, using 1 as
the maximum array value for the erosion image and 0 as the minimum value
for the dilation image:

erodeImg = REPLICATE (1B, dims[0]+2, dims[1]+2)
erodeImg [1,1] = img

dilateImg = REPLICATE (0B, dims[0]+2, dims[1]+2)
dilateImg [1,1] = img

Eroding and Dilating Image Objects Image Processing in IDL

Chapter 9: Extracting and Analyzing Shapes 247

14. Get the dimensions of either image, create a second window and display the
binary image:
dims = SIZE(erodeImg, /DIMENSIONS)
WINDOW, 2, XSIZE = 3*dims[0], YSIZE = dims([1], $

TITLE = "Original, Eroded and Dilated Binary Images"
TVSCL, img, O

15. Using the structuring element defined previoudly, apply the erosion and
dilation operations to the binary images and display the results by entering the
following lines:

erodeImg = ERODE (erodeImg, strucElem)
TVSCL, erodeImg, 1

dilateImg = DILATE (dilateImg, strucElem)
TVSCL, dilateImg, 2

The results are shown in the following figure.

Figure 9-5: Original, Eroded and Dilated Binary Images

Image Processing in IDL Eroding and Dilating Image Objects

248 Chapter 9: Extracting and Analyzing Shapes

Smoothing with MORPH_OPEN

The MORPH_OPEN function applies the opening operation, which is erosion
followed by dilation, to abinary or grayscale image. The opening operation removes
noise from an image while maintaining the overall sizes of objects in the foreground.
Opening is auseful process for smoothing contours, removing pixel noise,
eliminating narrow extensions, and breaking thin links between features. After using
an opening operation to darken small objects and remove noise, thresholding or other
morphological processes can be applied to the image to further refine the display of
the primary shapes within the image.

The following example applies the opening operation to an image of microscopic
spherical organisms, Rhinosporidium seeberi protozoans. After applying the opening
operation and thresholding the image, only the largest elements of the image are
retained, the mature R.seeberi organisms. Complete the following steps for a detailed
description of the process.

Example Code
Seemorphopenexample.pro iNthe examples/doc/image subdirectory of the
IDL installation directory for code that duplicates this example. Run the example
procedure by entering morphopenexample at the IDL command prompt or view
thefilein an IDL Editor window by entering . EDIT morphopenexample.pro.

1. Preparethedisplay device and load grayscale color table:

DEVICE, DECOMPOSED = 0, RETAIN = 2
LOADCT, O

2. Select and open the imagefile:

file = FILEPATH('r_seeberi.jpg', $
SUBDIRECTORY = ['examples', 'data'l)
READ_JPEG, file, image, /GRAYSCALE

3. Get the image dimensions, prepare awindow and display the image:

dims = SIZE(image, /DIMENSIONS)

WINDOW, 0, XSIZE = 2*dims[0], YSIZE = 2*dims[1], $
TITLE = 'Defining Shapes with Opening Operation'

TVSCL, image, O

4. Define the radius of the structuring element and create a disk-shaped element
to extract circular features:

radius = 7
strucElem = SHIFT(DIST(2*radius+1l), radius, radius) LE radius

Smoothing with MORPH_OPEN Image Processing in IDL

javascript:doIDL("morphopenexample")
javascript:doIDL("bytescaling")
javascript:doIDL(".edit morphopenexample.pro")

Chapter 9: Extracting and Analyzing Shapes 249

Compared to the previous example, alarger element is used in order to retain

only the larger image elements, discarding all of the smaller background

features. Further increasesin the size of the structuring element would extract

even larger image features.

Tip
Enter PRINT, strucElem to view the structure created by the previous
statement.

5. Apply the MORPH_OPEN function to the image, specifying the GRAY
keyword for the grayscale image:

morphImg = MORPH_OPEN (image, strucElem, /GRAY)
6. Display theimage:
TVSCL, morphImg, 1

The following figure shows the original image (left) and the application of the
opening operation to the original image (right). The opening operation has
enhanced and maintained the sizes of the large bright objects within the image
while blending the smaller background features.

Figure 9-6: Application of the Opening Operation to a Grayscale Image

The following steps apply the opening operator to a binary image.

7. Create awindow and use HISTOGRAM in conjunction with PLOT, displaying
an intensity histogram to help determine the threshold intensity value:

WINDOW, 1, XSIZE = 400, YSIZE = 300
PLOT, HISTOGRAM (img)

Image Processing in IDL Smoothing with MORPH_OPEN

250 Chapter 9: Extracting and Analyzing Shapes

Note
Using an intensity histogram as a guide for determining threshold valuesis
described in the section, “Determining Intensity Values for Threshold and
Stretch” on page 240.

8. Using the histogram as a guide, create a binary image. To prepare to remove
background noise, retain only areas of the image where pixel values are equal
to or greater than 160:

threshImg = image GE 160
WSET, O
TVSCL, threshImg, 2

9. Apply the opening operation to the binary image to remove noise and smooth
contours, and then display the image:

morphThresh = MORPH_OPEN (threshImg, strucElem)
TVSCL, morphThresh, 3

The combination of thresholding and applying the opening operation has successfully
extracted the primary foreground features as shown in the following figure.

Figure 9-7: Binary Image (left) and Application of the Opening Operator to the
Binary Image (right)

Smoothing with MORPH_OPEN Image Processing in IDL

Chapter 9: Extracting and Analyzing Shapes 251

Smoothing with MORPH_CLOSE

The morphological closing operation performs dilation followed by erosion, the
opposite of the opening operation. The MORPH_CL OSE function smooths contours,
links neighboring features, and fills small gaps or holes. The operation effectively
brightens small objectsin binary and grayscale images. Like the opening operation,
primary objects retain their original shape.

The following example uses the closing operation and a square structuring element to
extract the shapes of mineral crystals. Complete the following steps for a detailed
description of the process.

Example Code
Seemorphcloseexample.pro inthe examples/doc/image subdirectory of
the IDL installation directory for code that duplicates this example. Run the
example procedure by entering morphcloseexample atthe IDL command
prompt or view thefilein an IDL Editor window by entering . EDIT
morphcloseexample.pro.

1. Preparethedisplay device and load a grayscale color table:

DEVICE, DECOMPOSED = 0, RETAIN = 2
LOADCT, O

2. Sdect thefile, read the data and get the image dimensions.

file = FILEPATH('mineral.png', $
SUBDIRECTORY = ['examples', 'data'])

img = READ_PNG(file)

dims = SIZE(img, /DIMENSIONS)

3. Using the dimensions of the image add a border for display purposes:

padImg = REPLICATE (0B, dims[0]+10, dims[1]+10)
padImg [5,5] = img

4. Get the padded image size, create awindow and display the original image:

dims = SIZE(padImg, /DIMENSIONS)

WINDOW, 0, XSIZE=2*dims[0], YSIZE=2*dims[1l], $
TITLE='Defining Shapes with the Closing Operator'

TVSCL, padImg, O

5. Using DIST, define a small square structuring element in order to retain the
detail and angles of the image features:

side = 3
strucElem = DIST(side) LE side

Image Processing in IDL Smoothing with MORPH_CLOSE

javascript:doIDL("morphcloseexample")
javascript:doIDL("bytescaling")
javascript:doIDL(".edit morphcloseexample.pro")
javascript:doIDL(".edit morphcloseexample.pro")

252 Chapter 9: Extracting and Analyzing Shapes

Tip
Enter PRINT, strucElem to view the structure created by the previous
statement.

6. Apply MORPH_CLOSE to the image and display the resulting image:

closeImg = MORPH_CLOSE (padImg, strucElem, /GRAY)
TVSCL, closeImg, 1

Thefollowing figure showsthe original image (left) and the results of applying
the closing operator (right). Notice that the closing operation has removed
much of the small, dark noise from the background of the image, while
maintaining the characteristics of the foreground features.

Figure 9-8: Original (left) and Closed Image (right)

7. Determine athreshold value, using an intensity histogram as a guide:

WINDOW, 2, XSIZE = 400, YSIZE = 300
PLOT, HISTOGRAM (closeImg)

Note
Using an intensity histogram as a guide for determining threshold valuesis

described in the section, “Determining Intensity Values for Threshold and
Stretch” on page 240.

8. Threshold the original image and display the resulting binary image:

binaryImg = padImg LE 160
WSET, O
TVSCL, binaryImg, 2

Smoothing with MORPH_CLOSE Image Processing in IDL

Chapter 9: Extracting and Analyzing Shapes 253

9. Now display abinary version of the closed image:

binaryClose = closeImg LE 160
TVSCL, binaryClose, 3

The results of thresholding the original and closed image using the same intensity
value clearly display the actions of the closing operator. The dark background noise
has been removed, much asif a dilation operation had been applied, yet the sizes of
the foreground features have been maintained.

Figure 9-9: Threshold of Original Image (left) and Closed Image (right)

Image Processing in IDL Smoothing with MORPH_CLOSE

254 Chapter 9: Extracting and Analyzing Shapes

Detecting Peaks of Brightness

The morphological top-hat operation, MORPH_TOPHAT, is also known as a peak
detector. This operator extracts only the brightest pixels from the original grayscae
image by first applying an opening operation to the image and then subtracting the
result from the original image. The top-hat operation is especially useful when
identifying small image features with high levels of brightness.

The following example applies the top-hat operation to an image of a mature
Rhinosporidium seeberi sporangium (spore case) with endospores. The circular
endospores will be extracted using a small disk-shaped structuring element. The top-
hat morphological operation effectively highlights the small bright endospores within
the image. Complete the following steps for a detailed description of the process.

Example Code
Seemorphtophatexample.pro inthe examples/doc/image subdirectory of
the IDL installation directory for code that duplicates this example. Run the
example procedure by entering morphtophatexample atthe IDL command
prompt or view thefilein an IDL Editor window by entering . EDIT
morphtophatexample.pro

1. Preparethedisplay device and load a grayscale color table:

DEVICE, DECOMPOSED = 0, RETAIN = 2
LOADCT, 0

2. Select and open the image file as a grayscale image:

file = FILEPATH('r_seeberi_spore.jpg', $
SUBDIRECTORY = ['examples', 'data'])
READ_JPEG, file, img, /GRAYSCALE

3. Get theimage dimensions, and add a border for display purposes:

dims = SIZE(img, /DIMENSIONS)
padImg = REPLICATE (0B, dims[0]+10, dims[1]+10)
padImg [5,5] = img

4. Get the new dimensions, create awindow and display the original image:

dims = SIZE(padImg, /DIMENSIONS)

WINDOW, 1, XSIZE = 2*dims[0], YSIZE = 2*dims[1], $
TITLE = 'Detecting Small Features with MORPH_TOPHAT'

TVSCL, padImg, O

5. After examining the structures you want to extract from the image (the small
bright specks), define acircular structuring element with asmall radius:

Detecting Peaks of Brightness Image Processing in IDL

javascript:doIDL("sharpening")
javascript:doIDL("bytescaling")
javascript:doIDL(".edit morphtophatexample.pro")
javascript:doIDL(".edit morphtophatexample.pro")

Chapter 9: Extracting and Analyzing Shapes 255

radius = 3
strucElem = SHIFT(DIST(2*radius+1l), radius, radius) LE radius
Tip
Enter PRINT, strucElem to view the structure created by the previous
statement.

6. Apply MORPH_TOPHAT to the image and display the results:

tophatImg = MORPH_TOPHAT (padImg, strucElem)
TVSCL, tophatImg, 1

The following figure shows the original image (left) and the peaks of
brightness that were detected after the top-hat operation subtracted an opened
image from the original image (right).

Figure 9-10: Original (left) and Top-hat Image (right)

7. Determine anintensity value with which to stretch the image using an intensity
histogram as a guide:

WINDOW, 2, XSIZE = 400, YSIZE = 300
PLOT, HISTOGRAM (padImg)

Note
Using an intensity histogram as a guide for determining intensity valuesis
described in the section, “Determining Intensity Values for Threshold and
Stretch” on page 240.

Image Processing in IDL Detecting Peaks of Brightness

256 Chapter 9: Extracting and Analyzing Shapes

8. Highlight the brighter image features by displaying a stretched version of the
image:

stretchImg = tophatImg < 70
WSET, O
TVSCL, stretchImg, 2

Pixels with values greater than 70 are assigned the maximum pixel value
(white) and the remaining pixels are scaled across the full range of intensities.

9. Create abinary mask of the image to display only the brightest pixels:

threshImg = tophatImg GE 60
TVSCL, threshImg, 3

The stretched top-hat image (left) and the image after applying a binary mask
(right) are shown in the following figure. The endospores within the image
have been successfully highlighted and extracted using the MORPH_TOPHAT
function.

Figure 9-11: Stretched Top-hat Image (left) and Binary Mask (right)

Detecting Peaks of Brightness Image Processing in IDL

Chapter 9: Extracting and Analyzing Shapes 257

Creating Image Object Boundaries

The WATERSHED function applies the watershed operation to grayscale images.
This operation creates boundaries in an image by detecting borders between poorly
distinguished image areas that contain similar pixel values.

To understand the watershed operation, imagine translating the brightness of the
image pixelsinto height. The brightest pixels becometall peaks and the darkest
pixels become basins or depressions. Now imagine flooding the image. The
watershed operation detects boundaries among areas with nearly the same value or
height by noting the points where single pixels separate two similar areas. The points
where these areas meet are then trandated into boundaries.

Note
Images are usually smoothed before applying the watershed operation. This
removes noise and small, unimportant fluctuations in the original image that can
produce oversegmentation and a lack of meaningful boundaries.

The following example combines an image containing the boundaries defined by the
watershed operation and the original image, a 1982 Landsat satellite image of the
Barringer Meteor Crater in Arizona. Compl ete the following steps for a detailed
description of the process.

Example Code
Seewatershedexample.pro inthe examples/doc/image subdirectory of the
IDL installation directory for code that duplicates this example. Run the example
procedure by entering watershedexample atthe DL command prompt or view
thefilein an IDL Editor window by entering . EDIT watershedexample.pro.

1. Preparethedisplay device and load the grayscale color table:

DEVICE, DECOMPOSED = 0, RETAIN = 2
LOADCT, O

2. Select and open the image of Barringer Meteor Crater, AZ:

file = FILEPATH('meteor_crater.jpg', $
SUBDIRECTORY = ['examples', 'data'l)
READ_JPEG, file, img, /GRAYSCALE

3. Get theimage size and create a window:

dims = SIZE(img, /DIMENSIONS)
WINDOW, 0, XSIZE = 3*dims[0], YSIZE = 2*dims[1]

Image Processing in IDL Creating Image Object Boundaries

javascript:doIDL("watershedexample")
javascript:doIDL("bytescaling")
javascript:doIDL(".edit watershedexample.pro")

258 Chapter 9: Extracting and Analyzing Shapes

4. Display the original image, annotating it using the XYOUTS procedure:

TVSCL, img, O
XYOUTS, 50, 444, 'Original Image', Alignment = .5, $
/DEVICE, COLOR = 255

5. Using/EDGE_TRUNCATE to avoid spikes along the edges, smooth the image
to avoid oversegmentation and display the smoothed image:
smoothImg = smooth(7, /EDGE_TRUNCATE)
TVSCL, smoothImg, 1

XYOUTS, (60 + dims[0]), 444, 'Smoothed Image', $
Alignment = .5, /DEVICE, COLOR = 255

The following figure shows that the smoothing operation retains the major
features within the image.

- Smoolhed Imoge

Figure 9-12: Smoothing the Original Image

6. Definethe radius of the structuring element and create the disk:

radius = 3
strucElem = SHIFT(DIST(2*radius+1l), radius, radius) LE radius

Tip
Enter PRINT, strucElem to view the structure created by the previous
statement.

7. Usethetop-hat operation before using watershed to highlight the bright areas
within the image.

tophatImg = MORPH_TOPHAT (smoothImg, strucElem)

Creating Image Object Boundaries Image Processing in IDL

Chapter 9: Extracting and Analyzing Shapes 259

8. Display theimage:

TVSCL, tophatImg, 2
XYOUTS, (60 + 2*dims[0]), 444, 'Top-hat Image', $
Alignment = .5, /DEVICE, COLOR = 255

9. Determine anintensity value with which to stretch the image using an intensity
histogram as a guide:

WINDOW, 2, XSIZE = 400, YSIZE = 300
PLOT, HISTOGRAM (smoothImg)

An intensity histogram of the smoothed image is used instead of the top-hat
image since it was empirically determined that the top-hat histogram did not
provide the required information.

Note
Using an intensity histogram as a guide for determining intensity valuesis
described in the section, “Determining Intensity Values for Threshold and
Stretch” on page 240.

10. Stretch theimage to set all pixelswith avalue greater than 70 to the maximum
pixel value (white) and display the results:

WSET, O

tophatImg = tophatImg < 70

TVSCL, tophatImg

XYOUTS, 75, 210, 'Stretched Top-hat Image', $
Alignment = .5, /DEVICE, COLOR = 255

The origina top-hat image (left) and the results of stretching the image (right)
are shown in the following figure.

Tap-hal Image Stretched Top—hat Imoge
+

Figure 9-13: Original (left) and Stretched Top-hat Image (right)

Image Processing in IDL Creating Image Object Boundaries

260 Chapter 9: Extracting and Analyzing Shapes

11. Apply the WATERSHED function to the stretched top-hat image. Specify
8-neighbor connectivity to survey the eight closest pixelsto the given pixel,
resulting in fewer enclosed regions, and display the results:

watershedImg = WATERSHED (tophatImg, CONNECTIVITY = 8)
TVSCL, watershedImg, 4

XYOUTS, (70 + dims[0]), 210, 'Watershed Image', $
Alignment = .5, /DEVICE, COLOR = 255

12. Combine the watershed image with the original image and display the resuilt:

img [WHERE (watershedImg EQ 0)]= 0

TVSCL, img, 5

XYOUuTs, (70 + 2*dims[0]), 210, 'Watershed Overlay',6 $
Alignment = .5, /DEVICE, COLOR = 255

The following display shows all images created in the previous example. The final
image, shown in the lower right-hand corner of the following figure, shows the
origina image with an overlay of the boundaries defined by the watershed operation.

|.’_'Ir|'q-|'n;:| W e 2w Smaothed Image Tap-hal Image

Stretched Top—hat Imoge

Figure 9-14: Boundaries Defined by the Watershed Operation

Creating Image Object Boundaries Image Processing in IDL

Chapter 9: Extracting and Analyzing Shapes 261

Selecting Specific Image Objects

The hit-or-miss morphological operation is used primarily for identifying specific
shapes within binary images. The MORPH_HITORMISS function uses two
structuring elements; a“hit” structure and a“miss’ structure. The operation first
applies an erosion operation with the hit structure to the original image. The
operation then applies an erosion operator with the miss structure to an inverse of the
original image. The matching image elements entirely contain the hit structure and
are entirely and solely contained by the miss structure.

Note
An image must be padded with a border equal to one half the size of the structuring
element if you want the hit-or-miss operation to be applied to image elements
occurring along the edges of the image.

The hit-or-miss operation is very sensitive to the shape, size and rotation of the two
structuring elements. Hit and miss structuring elements must be specifically designed
to extract the desired geometric shapes from each individual image. When dealing
with complicated images, extracting specific image regions may require multiple
applications of hit and miss structures, using arange of sizes or several rotations of
the structuring elements.

The following example uses the image of the Rhinosporidium seeberi parasitic
protozoans, containing simple circular shapes. After specifying distinct hit and miss
structures, the elements of the image that meet the hit and miss conditions are
identified and overlaid on the original image. Complete the following steps for a
detailed description of the process.

Example Code
Seemorphhitormissexample.pro iNtheexamples/doc/image subdirectory
of the IDL installation directory for code that duplicates this example. Run the
example procedure by entering morphhitormissexample at thelDL command
prompt or view thefilein an IDL Editor window by entering . EDIT
morphhitormissexample.pro.

1. Preparethedisplay device and load a grayscale color table:

DEVICE, DECOMPOSED = 0, RETAIN = 2
LOADCT, O

2. Select and open the imagefile:

Image Processing in IDL Selecting Specific Image Objects

javascript:doIDL("morphhitormissexample")
javascript:doIDL("bytescaling")
javascript:doIDL(".edit morphhitormissexample.pro")
javascript:doIDL(".edit morphhitormissexample.pro")

262 Chapter 9: Extracting and Analyzing Shapes

file = FILEPATH('r_seeberi.jpg', $
SUBDIRECTORY = ['examples', 'data'l)
READ_JPEG, file, img, /GRAYSCALE

3. Pad theimage so that objects at the edges of the image are not discounted:

dims = SIZE(img, /DIMENSIONS)
padImg = REPLICATE (0B, dims[0]+10, dims[1]+10)
padImg [5,5] = img

Failing to pad an image causes all objects occurring at the edges of the image
to fail the hit and miss conditions.

4. Get the image dimensions, create awindow and display the padded image:

dims = SIZE(padImg, /DIMENSIONS)

WINDOW, 0, XSIZE = 3*dims[0], YSIZE = 2*dims[1], $
TITLE='Displaying Hit-or-Miss Matches'

TVSCL, padImg, O

5. Definethe radius of the structuring element and create a large, disk-shaped
element to extract the large, circular image objects:

radstr = 7
strucElem = SHIFT(DIST(2*radstr+l), radstr, radstr) LE radstr

Tip
Enter PRINT, strucElem to view the structure created by the previous
statement.

6. Apply MORPH_OPEN for a smoothing effect and display the image:

openImg = MORPH_OPEN (padImg, strucElem, /GRAY)
TVSCL, openImg, 1

7. Since the hit-or-miss operation requires a binary image, display an intensity
histogram as a guide for determining a threshold value:

WINDOW, 2, XSIZE = 400, YSIZE = 300
PLOT, HISTOGRAM (openlImg)

Note
Using an intensity histogram as a guide for determining threshold valuesis
described in the section, “Determining Intensity Values for Threshold and
Stretch” on page 240.

8. Create ahinary image by retaining only those image elements with pixel
values greater than or equal to 150 (the bright foreground objects):

Selecting Specific Image Objects Image Processing in IDL

Chapter 9: Extracting and Analyzing Shapes 263

threshImg = openImg GE 150

WSET, O

TVSCL, threshImg, 2
The results of opening (left) and thresholding (right) are shown in the
following figure.

Figure 9-15: Results of Opening (left) and Thresholding (right)

9. Create the structuring elements for the hit-or-miss operation:

radhit = 7

radmiss = 23

hit = SHIFT(DIST(2*radhit+1l), radhit, radhit) LE radhit

miss = SHIFT(DIST(2*radmiss+l), radmiss, radmiss) GE radmiss

While the shapes of the structuring elements are purposefully circular, the

sizes were chosen after empirically testing, seeking elements suitable for this

example.

Tip
Enter PRINT, hit Or PRINT, miss to Vview the structures.

The following figures shows the hit and miss structuring elements and the
binary image. Knowing that the region must enclose the hit structure and be

Image Processing in IDL Selecting Specific Image Objects

264 Chapter 9: Extracting and Analyzing Shapes

surrounded by abackground areaat |east aslarge as the miss structure, can you
predict which regions will be “matches?’

Hit Structure

Miss Structure

Figure 9-16: Applying the Hit and Miss Structuring Elements to a Binary Image

10. Apply the MORPH_HITORMISS function to the binary image. Image regions
matching the hit and miss conditions are designated at matches:

matches = MORPH_HITORMISS (threshImg, hit, miss)

11. Display the elements matching the hit and miss conditions, dilating the
elements to the radius of ahit:

dmatches = DILATE (matches, hit)
TVSCL, dmatches, 3

12. Display the original image overlaid with the matching elements:

padImg [WHERE (dmatches EQ 1)] =1
TVSCL, padImg, 4

The following figure shows the elements of the image which matched the hit and
miss conditions, having aradius of at least 7 (the hit structure), yet fitting entirely
inside a structure with aradius of 23 (the miss structure).

Figure 9-17: Image Elements Matching Hit and Miss Conditions

Selecting Specific Image Objects Image Processing in IDL

Chapter 9: Extracting and Analyzing Shapes 265

Initially, it may appear that more regions should have been “matches’ since they met
the hit condition of having aradius of 7 or more. However, as the following figure
shows, many such regions failed the miss condition since neighboring regions
impinged upon the miss structure. Such aregion appears on the left in the following

figure.

Match

Region is entirely
contained within
the “miss” structure.

No Match

Other regions prevent
a match for the miss
structuring element.

Figure 9-18: Example of Hit and Miss Relationship

Considering the simplicity of the previousimage, it is understandable that selecting
hit and miss structures for more complex images can require significant empirical
testing. It is to your advantage to keep in mind how sensitive the hit-or-miss
operation is to the shapes, sizes and rotations of the hit and miss structures.

Image Processing in IDL Selecting Specific Image Objects

266 Chapter 9: Extracting and Analyzing Shapes

Detecting Edges of Image Objects

The MORPH_GRADIENT function applies the gradient operation to agrayscale
image. This operation highlights object edges by subtracting an eroded version of the
original image from a dilated version. Repeatedly applying the gradient operator or
increasing the size of the structuring element results in wider edges.

The following example extracts image features by applying the morphological
gradient operation to an image of the Mars globe. Complete the following steps for a
detailed description of the process.

Example Code
Seemorphgradientex.pro inthe examples/doc/image subdirectory of the
IDL installation directory for code that duplicates this example. Run the example
procedure by entering morphgradientex at the DL command prompt or view
thefilein an IDL Editor window by entering . EDIT morphgradientex.pro.

1. Preparethedisplay device and load the grayscale color table:

DEVICE, DECOMPOSED = 0, RETAIN = 2
LOADCT, O

2. Seect and read in thefile:

file = FILEPATH('marsglobe.jpg', $
SUBDIRECTORY=['examples', 'data'l)
READ_JPEG, file, image, /GRAYSCALE

3. Get theimage size, create awindow and display the smoothed image:

dims = SIZE(image, /DIMENSIONS)
WINDOW, 0, XSIZE =2*dims[0], YSIZE = 2*dims[1l], S
TITLE = 'Original and MORPH_GRADIENT Images'

Detecting Edges of Image Objects Image Processing in IDL

javascript:doIDL("morphgradientex")
javascript:doIDL("bytescaling")
javascript:doIDL(".edit morphgradientex.pro")

Chapter 9: Extracting and Analyzing Shapes 267

Theoriginal image is shown in the following figure.

Figure 9-19: Image of Mars Globe
4. Preserve the greatest amount of detail within the image by defining a
structuring element with aradius of 1, avoiding excessively thick edge lines:

radius = 1
strucElem = SHIFT(DIST(2*radius+1l), radius, radius) LE radius

Tip
Enter PRINT, strucElem to view the structure created by the previous
statement.

5. Apply the MORPH_GRADIENT function to the image and display the result:

morphImg = MORPH_GRADIENT (image, strucElem)
TVSCL, morphImg, 2

6. To more easily distinguish features within the dark image, prepare to stretch
the image by displaying an intensity histogram:

WINDOW, 2, XSIZE = 400, YSIZE = 300
PLOT, HISTOGRAM (1l-image)

The previous line returns a histogram of an inverse of the original image since
the final display will also be an inverse display for showing the greatest detail.

7. Stretch theimage and display itsinverse:

WSET, O
TVSCL, 1-(morphImg < 87), 3

Image Processing in IDL Detecting Edges of Image Objects

268 Chapter 9: Extracting and Analyzing Shapes

The following figure displays the initial and stretched gradient images.

Figure 9-20: Initial and Stretched Results of the Gradient Operation

Detecting Edges of Image Objects Image Processing in IDL

Chapter 9: Extracting and Analyzing Shapes 269

Creating Distance Maps

The MORPH_DISTANCE function computes a grayscale, N-dimensional distance
map from a binary image. The map shows, for each foreground pixel, the distance to
the nearest background pixel using a given norm. The norm simply defines how
neighboring pixels are sampled. See the MORPH_DISTANCE description in the IDL
Reference Guide for full details. The resulting values in the grayscale image denote
the distance from the surveyed pixel to the nearest background pixel. The brighter the
pixel, the farther it is from the background.

The following example applies the distance transformation to a grayscale image of a
cultured sample of Neocosmospora vasinfecta, a common fungal plant pathogen.
Complete the following steps for a detailed description of the process.

Example Code
Seemorphdistanceexample.pro inthe examples/doc/image subdirectory
of the IDL installation directory for code that duplicates this example. Run the
example procedure by entering morphdistanceexample atthe DL command
prompt or view thefilein an IDL Editor window by entering . EDIT
morphdistanceexample.pro.

1. Preparethedisplay device and load a grayscale color table:

DEVICE, DECOMPOSED = 0, RETAIN = 2
LOADCT, O

2. Sdect and load an image:

file = FILEPATH('n_vasinfecta.jpg', $
SUBDIRECTORY = ['examples', 'data'])
READ_JPEG, file, img, /GRAYSCALE

3. Get the size of the image and create a border for display purposes:

dims = SIZE(img, /DIMENSIONS)
padImg = REPLICATE (0B, dims[0]+10, dims[1]+10)
padImg[5,5] = img

4. Get the dimensions of the padded image, create awindow and display the
origina image:

dims = SIZE(padImg, /DIMENSIONS)

WINDOW, 0, XSIZE = 2*dims[0], YSIZE = 2*dims[1], $
TITLE='Distance Map and Overlay of Binary Image'

TVSCL, padImg, O

5. Useanintensity histogram as a guide for creating a binary image:

Image Processing in IDL Creating Distance Maps

javascript:doIDL("morphdistanceexample")
javascript:doIDL("bytescaling")
javascript:doIDL(".edit morphdistanceexample.pro")
javascript:doIDL(".edit morphdistanceexample.pro")

270 Chapter 9: Extracting and Analyzing Shapes

WINDOW, 2, XSIZE = 400, YSIZE = 300
PLOT, HISTOGRAM (padImg)

Note
Using an intensity histogram as a guide for determining intensity valuesis
described in the section, “Determining Intensity Values for Threshold and
Stretch” on page 240.

6. Before using the distance transform, the grayscale image must be translated
into a binary image. Create and display a binary image containing the dark
tubules. Threshold the image, masking out pixels with values greater than 120:

binaryImg = padImg LT 120

WSET, O
TVSCL, binaryImg, 1

The original image (left) and binary image (right) appear in the following
figure.

T W,

f ’

’1"-‘.

Figure 9-21: Original Image (left) and Binary Image (right)

7. Compute the distance map using MORPH_DISTANCE, specifying
“chessboard” neighbor sampling, which surveys each horizontal, vertical and
diagonal pixel touching the pixel being surveyed, and display the result:

distanceImg = MORPH_DISTANCE (binaryImg, $

NEIGHBOR_SAMPLING = 1)
TVSCL, distancelImg, 2

8. Display acombined image of the distance map and the binary image. Black
areas within the binary image (having avalue of 0) are assigned the maximum
pixel value occurring in the distance image:

distanceImg [WHERE (binaryImg EQ 0)] = MAX(distanceImg)

Creating Distance Maps Image Processing in IDL

Chapter 9: Extracting and Analyzing Shapes 271

TVSCL, distanceImg, 3

The distance map (left) and resulting blended image (right) show the distance
of each image element pixel from the background.

Figure 9-22: Distance Map (left) and Merged Map and Binary Image (right)

Image Processing in IDL Creating Distance Maps

272 Chapter 9: Extracting and Analyzing Shapes

Thinning Image Objects

The MORPH_THIN function performs a thinning operation on binary images. After
designating “hit” and “miss’ structures, the thinning operation applies the hit-or-miss
operator to the original image and then subtracts the result from the original image.

The thinning operation is typically applied repeatedly, leaving only pixel-wide linear
representations of the image objects. The thinning operation halts when no more
pixels can be removed from the image. This occurs when the thinning operation
(applying the hit and miss structures and subtracting the result) produces no change
in the input image. At this point, the thinned image is identical to the input image.

When repeatedly applying the thinning operation, each successive iteration uses hit
and miss structures that have had the individual elements of the structures rotated one
position clockwise. For example, the following 3-by-3 arrays show the initial
structure (left) and the structure after rotating the elements one position clockwise
around the central value (right).

ho = [[0,0,0], hl = [[0,0,0],
(0,1,01, (1,1,01,
[(1,1,11] [(1,1,0]]

The following example uses eight rotations of each of the origina hit and miss
structuring elements. The repeated application of the thinning operation resultsin an
image containing only pixel-wide linesindicating the original grains of pollen. This
example displays the results of each successive thinning operation. Complete the
following steps for a detailed description of the process.

Example Code
Seemorphthinexample.pro inthe examples/doc/image subdirectory of the
IDL instalation directory for code that duplicates this example. Run the example
procedure by entering morphthinexample atthe |DL command prompt or view
thefilein an IDL Editor window by entering . EDIT morphthinexample.pro.

Note
This example uses afile from the examples/demo/demodata directory of your
installation. If you have not already done so, you will need to install “IDL Demos”
from your product CD-ROM to install the demo data file needed for this example.

1. Preparethedisplay device and load a grayscale color table:

DEVICE, DECOMPOSED = 0, RETAIN = 2
LOADCT, O

Thinning Image Objects Image Processing in IDL

javascript:doIDL("morphthinexample")
javascript:doIDL("bytescaling")
javascript:doIDL(".edit morphthinexample.pro")

Chapter 9: Extracting and Analyzing Shapes 273

2. Select and open the imagefile:

file = FILEPATH('pollens.jpg', $
SUBDIRECTORY = ['examples', 'demo', 'demodata'])
READ_JPEG, file, img, /GRAYSCALE

3. Get the image dimensions, create awindow and display the origina image:

dims = SIZE(img, /DIMENSIONS)

WINDOW, 0, XSIZE = 2*dims[0], YSIZE = 2*dims[1], $
TITLE='0Original, Binary and Thinned Images'

TVSCL, img, O

4. Thethinning operation requires a binary image. Create a binary image,
retaining pixelswith values greater than or equal to 140, and display the
image:

binaryImg = img GE 140
TVSCL, binaryImg, 1

Note
The following lines were used to determine the threshold value:
WINDOW, 2, XSIZE = 400, YSIZE = 300
PLOT, HISTOGRAM (img)
See “Determining Intensity Values for Threshold and Stretch” on page 240
for details about using a histogram to determine intensity values.

5. Prepare hit and miss structures for thinning. Rotate the outer elements of each
successive hit and miss structure one position clockwise:

Note
For aversion of these structuresthat is easy to copy and paste into an Editor
window, see MorphThinExample.pro inthe examples/doc/image
subdirectory of the IDL installation directory. This code displays the eight
pairs of hit and miss structuring elements on individua lines so that the code
can be easily copied into an Editor window. Although it islessvisible, the
elements of each successive structure are rotated as shown below and as
described in the beginning of this section, “Thinning Image Objects’ on

page 272.

hO = [[0b,0,0], S
[0,1,01, $
[1,1,11]

m0 = [[1b,1,1], $
[0,0,0], ¢
[0,0,0]]

hl = [[0b,0,0], S

Image Processing in IDL Thinning Image Objects

274

(1,1,01, $
[1,1,0]]

ml

[[0b,1,1], $

[0,0,11, s
[0,0,01]

h2 = [[1b,0,01, $
[1,1,01, s
[1,0,01]

m2 = [[0b,0,1], S
[0,0,11, s
[0,0,11]

h3 = [[1b,1,0], $
[1,1,01, s
[0,0,01]

m3 = [[0b,0,0]1, $
[0,0,11, s
[0,1,11]

h4

([1b,1,1], $

(0,1,01, $
(0,0,01]

m4

[[0b,0,0], $

[0,0,0], $
(1,1,1]]

h5

[[0b,1,1], $

(0,1,11, $
(0,0,01]

m5

[[0b,0,0], $

[1,0,0], $
[1,1,0]]

hé

[[0b,0,1], $

(0,1,11, $
[0,0,1]]

mé

[([1b,0,0], $

(1,0,01, $
[1,0,01]

h7 = [[0b,0,01, $
[0,1,11, $
[0,1,1]1]

m7 = [[1b,1,0], $
(1,0,01, $
[0,0,01]

binary image:

bCont =
ilter =
thinImg

Thinning Image Objects

1b
1

binaryImg

Chapter 9: Extracting and Analyzing Shapes

6. Definetheiteration variables for the WHILE loop and prepareto passin the

Image Processing in IDL

Chapter 9: Extracting and Analyzing Shapes 275

7. Enter the following WHILE loop statements into the Editor window. The loop
specifies that the image will continue to be thinned with MORPH_THIN until
the thinned image is equal to the image input into the loop. Since thinlmg
equalsinputimg, the loop is exited when a complete iteration produces no
changesin theimage. In this case, the condition, bcont eq 1 failsand the
loop is exited.

WHILE bCont EQ 1b DO BEGIN & $
PRINT, 'ITteration: ', ilter & $
inputImg = thinImg & $
thinImg = MORPH_THIN (inputImg, hO, m0) & $
thinImg = MORPH_THIN(thinImg, hl, ml)
thinImg = MORPH_THIN(thinImg, h2, m2)
thinImg = MORPH_THIN(thinImg, h3, m3)
thinImg MORPH_THIN (thinImg, h4, m4)
thinImg MORPH_THIN (thinImg, h5, m5)
thinImg = MORPH_THIN(thinImg, h6, m6)
thinImg = MORPH_THIN(thinImg, h7, m7)
TVSCL, thinImg, 2 & $

R R R R R R R
Vr r U Uy r U Wy

WAIT, 1 & $
bCont = MAX (inputImg - thinImg) & $
iIlter = iIter + 1 & $

ENDWHILE

Note
The & after BEGIN and the $ allow you to use the WHILE/DO loop at the

IDL command line. These & and $ symbols are not required when the
WHILE/DO loop in placed in an IDL program as shown in
MorphThinExample.pro inthe examples/doc/image subdirectory of
the IDL installation directory.

8. Display an inverse of the final result:

TVSCL, 1 - thinImg, 3

Image Processing in IDL Thinning Image Objects

276 Chapter 9: Extracting and Analyzing Shapes

The following figure displays the results of the thinning operation, reducing the
original objectsto asingle pixel wide lines.

Figure 9-23: Original Image (top left), Binary Image (top right), Thinned Image
(bottom left) and Inverse Thinned Image (bottom right)

Each successive thinning iteration removed pixels marked by the results of the

hit-or-miss operation aslong as the removal of the pixelswould not destroy the
connectivity of the line.

Thinning Image Objects Image Processing in IDL

Chapter 9: Extracting and Analyzing Shapes 277

Combining Morphological Operations

The following example uses a variety of morphological operations to remove bridges
from a satellite image of New York waterways. Compl ete the following steps for a
detailed description of the process.

Example Code
Seeremovebridges.pro intheexamples/doc/image subdirectory of the DL
installation directory for code that duplicates this example. Run the example
procedure by entering removebridges at the IDL command prompt or view the
filein an IDL Editor window by entering .EDIT removebridges.pro.

1. Preparethedisplay device and load a color table:

DEVICE, DECOMPOSED = 0, RETAIN = 2
LOADCT, O

2. Specify the known dimensions and use READ_BINARY to load the image:

xsize = 768

ysize = 512

img = READ_BINARY (FILEPATH('nyny.dat',6 $
SUBDIRECTORY = ['examples', 'data'l), $
DATA_DIMS = [xsize, ysizel)

3. Increase the image's contrast and display the image:

img = BYTSCL (img)
WINDOW, 1, TITLE = 'Original Image'
TVSCL, img

Image Processing in IDL Combining Morphological Operations

javascript:doIDL("removebridges")
javascript:doIDL("bytescaling")
javascript:doIDL(".edit removebridges.pro")

278 Chapter 9: Extracting and Analyzing Shapes

Figure 9-24: Original Image

4. Prepareto threshold the image, using an intensity histogram as a guide for
determining the intensity value:

WINDOW, 4, XSIZE = 400, YSIZE = 300
PLOT, HISTOGRAM (img)

Note
Using an intensity histogram as a guide for determining threshold valuesis
described in the section, “Determining Intensity Values for Threshold and
Stretch” on page 240.

5. Create amask of the darker pixelsthat have values less than 70:
maskImg = img LT 70

6. Define and create a small square structuring element, which has a shape
similar to the bridges which will be masked out:

side = 3
strucElem = DIST(side) LE side

7. Remove detailsin the binary mask's shape by applying the opening operation:

maskImg = MORPH_OPEN (maskImg, strucElem)

Combining Morphological Operations Image Processing in IDL

Chapter 9: Extracting and Analyzing Shapes 279

8. Fuse gaps in the mask's shape by applying the closing operation and display
the image:
maskImg = MORPH_CLOSE (maskImg, strucElem)

WINDOW, 1, title='Mask After Opening and Closing'
TVSCL, maskImg

Thisresultsin the following figure:

Figure 9-25: Image Mask After Opening and Closing Operations

9. Prepareto removeall but the largest region in the mask by labeling the
regions:

labelImg = LABEL_REGION (maskImg)

10. Discard the black background by keeping only the white areas of the previous
figure:

regions = labelImg[WHERE (labelImg NE 0)]

11. Define mainRegion as the area where the population of the labellmg region
matches the region with the largest population:

mainRegion = WHERE (HISTOGRAM (labelImg) EQ $
MAX (HISTOGRAM (regions)))

12. Define maskimg as the area of labellmg equal to the largest region of
mainRegion, having an index number of 0 and display the image:

maskImg = labelImg EQ mainRegion[0]
Window, 3, TITLE = 'Final Masked Image'
TVSCL, maskImg

Image Processing in IDL Combining Morphological Operations

280 Chapter 9: Extracting and Analyzing Shapes

Thisresultsin amask of the largest region, the waterways, as shown in the
following figure.

Figure 9-26: Final Image Mask

13. Remove noise and smooth contoursin the original image:
newImg = MORPH_OPEN (img, strucElem, /GRAY)

14. Replace the new image with the original image, whereit’s not masked:
newImg [WHERE (maskImg EQ 0)] = img[WHERE (maskImg EQ 0)]

15. View the results using FLICK to alternate the display between the original
image and the new image containing the masked areas:

WINDOW, 0, XSIZE = xsize, YSIZE = ysize
FLICK, img, newImg

Combining Morphological Operations Image Processing in IDL

Chapter 9: Extracting and Analyzing Shapes 281

Hit any key to stop the image from flickering. Details of the two images are
shown in the following figure.

Figure 9-27: Details of Original (left) and Resulting Image of New York (right)

Image Processing in IDL Combining Morphological Operations

282 Chapter 9: Extracting and Analyzing Shapes

Analyzing Image Shapes

After using a morphological operation to expose the basic el ements within an image,
it is often useful to then extract and analyze specific information about those image
elements. The following examples use the LABEL_REGION function and the
CONTOUR procedure to identify and extract information about specific image
objects.

The LABEL_REGION function labels all of the regions within a binary image,
giving each region a unique index number. Use this function in conjunction with the
HISTOGRAM function to view the population of each region. See “Using
LABEL_REGION to Extract Image Object Information” in the following section for
an example.

The CONTOUR procedure draws a contour plot from image data, and allows the
selection of image objects occurring at a specific contour level. Further processing
using PATH_* keywords returns the location and coordinates of polygons that define
a specific contour level. See “Using CONTOUR to Extract Image Object
Information” on page 286 for an example.

Using LABEL_REGION to Extract Image Object
Information
The following example identifies unique regions within the image of the

Rhinosporidium seeberi parasitic protozoans and prints out region popul ations.
Complete the following steps for a detailed description of the process.

Example Code
See labelregionexample.pro inthe examples/doc/image subdirectory of
the IDL installation directory for code that duplicates this example. Run the
example procedure by entering 1abelregionexample atthe IDL command
prompt or view thefilein an IDL Editor window by entering . EDIT
labelregionexample.pro.

1. Preparethedisplay device and load a grayscale color table:

DEVICE, DECOMPOSED = 0, RETAIN = 2
LOADCT, O

2. Select and open the imagefile:

file = FILEPATH('r_seeberi.jpg', $
SUBDIRECTORY = ['examples',6 'data'])
READ_JPEG, file, image, /GRAYSCALE

Analyzing Image Shapes Image Processing in IDL

javascript:doIDL("labelregionexample")
javascript:doIDL("bytescaling")
javascript:doIDL(".edit labelregionexample.pro")
javascript:doIDL(".edit labelregionexample.pro")

Chapter 9: Extracting and Analyzing Shapes 283

3. Get the image dimensions and add a border (for display purposes only):

dims = SIZE(image, /DIMENSIONS)
padImg = REPLICATE (0B, dims[0]+20, dims[1]+20)
padImg[10,10] = image

4. Get the dimensions of the padded image, create awindow and display the
origina image:
dims = SIZE(padImg, /DIMENSIONS)
WINDOW, 0, XSIZE = 2*dims[0], YSIZE = 2*dims[1l], $

TITLE = 'Opened, Thresholded and Labeled Region Images'
TVSCL, padImg, O

5. Create alarge, circular structuring element to extract the large circular
foreground features. Define the radius of the structuring element and create the

disk:
radius = 5
strucElem = SHIFT(DIST(2*radius+1l), radius, radius) LE radius
Tip
Enter PRINT, strucElem to view the structure created by the previous
Statement.

6. Apply the opening operation to the image to remove background noise and
display the image:

openImg = MORPH_OPEN (padImg, strucElem, /GRAY)
TVSCL, openImg, 1

This original image (eft) and opened image (right) appear in the following
figure.

Figure 9-28: Original Image (left) and Application of Opening Operator (right)

Image Processing in IDL Analyzing Image Shapes

284

10.

11.

12.

Chapter 9: Extracting and Analyzing Shapes

Display an intensity histogram to use as a guide when thresholding:

WINDOW, 2, XSIZE = 400, YSIZE = 300
PLOT, HISTOGRAM (openlmg)

Note
Using an intensity histogram as a guide for determining threshold valuesis
described in the section, “Determining Intensity Values for Threshold and
Stretch” on page 240.

Retain only the brighter, foreground pixels by setting the threshold intensity at
170 and display the binary image:

threshImg = openImg GE 170
WSET, O
TVSCL, threshImg, 2

Identify unique regions using the LABEL_REGION function:
regions = LABEL_REGION (threshImg)

Usethe HISTOGRAM function to calculate the number of e ementsin each
region:

hist = HISTOGRAM (regions)

Create aFOR loop that will return the population and percentage of each
foreground region based on the results returned by the HISTOGRAM function:

FOR i=1, N_ELEMENTS (hist) - 1 DO PRINT, 'Region', i, $
', Pixel Popluation = ', hist(i), $
Percent = ', 100.*FLOAT (hist[1])/ (dims[0]*dims[1])

Load acolor table and display the regions. For this example, use the sixteen
level color table to more easily distinguish individual regions:

LOADCT, 12
TVSCL, regions, 3

Analyzing Image Shapes Image Processing in IDL

Chapter 9: Extracting and Analyzing Shapes 285

In the following figure, the image containing the labeled regions (right) shows
19 distinct foreground regions.

Figure 9-29: Binary Image (left) and Image of Unique Regions (right)

Ti
Bisplay the color table by entering XLOADCT at the command line. By
viewing the color table, you can see that region index values start in the
lower-left corner of the image. Realizing this makes it easier to relate the
region populations printed in the Output Log with the regions shown in the
image.

13. Create a new window and display the individual region populations by
graphing the values of hist using the SURFACE procedure:

WINDOW, 1, $

TITLE = 'Surface Representation of Region Populations'
FOR i1 = 1, N_ELEMENTS (hist)-1 DO $

regions [WHERE (regions EQ i)] = hist[i]
SURFACE, regions

Image Processing in IDL Analyzing Image Shapes

286

Chapter 9: Extracting and Analyzing Shapes

The previous command results in the following display of the region
populations.
al m

W |

I
Figure 9-30: Surface Representation of Region Populations

MA l

| W

Using CONTOUR to Extract Image Object Information

It is possible to extract information about an image feature using the CONTOUR
procedure. The following example illustrates how to select an image feature and
return the area of that feature, in this case, calculating the size of agaspocketinaCT
scan of the thoracic cavity. Complete the following steps for a detailed description of
the process.

Example Code
See extractcontourinfo.pro inthe examples/doc/image subdirectory of

the IDL installation directory for code that duplicates this example. Run the
example procedure by entering extractcontourinfo atthe DL command
prompt or view thefilein an IDL Editor window by entering . EDIT
extractcontourinfo.pro.

Note
For moreinformation on computing statistics for defined image objects see Chapter

6, “Working with Regions of Interest (ROISs)”

1. Preparethedisplay device and load a color table:

Analyzing Image Shapes Image Processing in IDL

javascript:doIDL("extractcontourinfo")
javascript:doIDL("bytescaling")
javascript:doIDL(".edit extractcontourinfo.pro")
javascript:doIDL(".edit extractcontourinfo.pro")

Chapter 9: Extracting and Analyzing Shapes 287

DEVICE, DECOMPOSED = 0, RETAIN = 2
LOADCT, 5

2. Determinethe path to thefile:

file = FILEPATH('ctscan.dat', $
SUBDIRECTORY = ['examples', 'data'])

3. Initidize the size parameters:

dims = [256, 256]
4. Import the image from thefile:

image = READ_BINARY (file, DATA_DIMS = dims)
5. Create awindow and display the image:

WINDOW, 0, XSIZE = dims[0], YSIZE = dims[1]
TVSCL, image

6. Create another window and use CONTOUR to display afilled contour of the
image, specifying 255 contour levels which correspond to the number of
values occurring in byte data:

WINDOW, 2
CONTOUR, image, /XSTYLE, /YSTYLE, NLEVELS = 255, $
/FILL

Note
Replace NLEVELS = 255 WithNLEVELS = MAX (image) if your display
uses less than 256 colors.

7. Usethe PATH_* keywords to obtain information about the contours occurring
at level 40:

CONTOUR, image, /XSTYLE, /YSTYLE, LEVELS = 40, $
PATH_INFO = info, PATH XY = xy, /PATH_DATA_ COORDS

The PATH_INFO variable, info, contains information about the paths of the
contours, which when used in conjunction with PATH_XY, traces closed
contour paths. Specify PATH_DATA_COORDS when using PATH_XY if you
want the contour positions to be measured in data units instead of the default
normalized units.

8. Using the coordinate information obtained in the previous step, usethe PLOTS
procedure to draw the contours of image objects occurring at level 40, using a
different line style for each contour:

FOR 1 = 0, (N_ELEMENTS(info) - 1) DO PLOTS, $
xy[*, info[i].offset: (info[i].offset + infol[i]l.n - 1)], $

Image Processing in IDL Analyzing Image Shapes

288

10.

11.

Chapter 9: Extracting and Analyzing Shapes

LINESTYLE = (i < 5), /DATA

The specified contour is drawn with a dashed line or LINESTY LE number 2
(determined by looking at “Graphics Keywords’ in Appendix B of the IDL
Reference Guide). Use REFORM to create vectors containing the x and y
boundary coordinates of the contour:
x = REFORM(xy [0, info[2].offset: (info[2].0offset + $
info[2].n - 1)1])

v = REFORM(xy[1l, info[2].offset: (info[2].offset + $
info[2].n - 1)1)

Set the last element of the coordinate vectors equal to the first element to
ensure that the contour area is completely enclosed:

x [x, x[0]]
Yy ly, y[0]]

This example obtains information about the left-most gas pocket. For display
purposes only, draw an arrow pointing to the region of interest:

ARROW, 10, 10, (MIN(x) + MAX(x))/2, COLOR = 180, S
(MIN(y) + MAX(y))/2, THICK = 2, /DATA

The gas pocket is indicated with an arrow as shown in the following figure.

T = e B B B S B A

a 50 100 150 200 250

Figure 9-31: Gas Pocket Indicated in CT Scan of Thoracic Cavity

Analyzing Image Shapes Image Processing in IDL

Chapter 9: Extracting and Analyzing Shapes 289

12. Output the resulting coordinate vectors, using TRANSPOSE to print vertica
lists of the coordinates:

PRINT,
PRINT, ' X , v'
PRINT, [TRANSPOSE (x), TRANSPOSE(y)], FORMAT = '(2F15.6)"

The FORMAT statement tells IDL to format two 15 character floating point
values that have 6 characters following the decimal of each value.

13. Usethe POLY _AREA function to compute the area of the polygon created by
the x and y coordinates and print the result:

area = POLY_AREA(x, V)
PRINT, 'area = ', ROUND(area), ' square pixels'

Theresult, 121 sgquare pixels, appears in the Output Log.

Image Processing in IDL Analyzing Image Shapes

290 Chapter 9: Extracting and Analyzing Shapes

Analyzing Image Shapes Image Processing in IDL

Index

A

adaptive

filtering, 229

histogram equalization, 188
adaptiveequalizing.pro, 188
adding borders. See padding images
arbitraryrotation.pro, 36

B

backprojecthoughandradon.pro, 161
backprojection

Hough transform, 161

Radon transform, 161
binary images

data definition, 12

masking, 62

Image Processing in IDL

morphological operations, 234
thinning operation, 272
borders. See padding images
boundaries, 257
byte scaling
images, 181
bytescaling.pro, 181

C

calculatingstatistics.pro, 77
clipping

images, 69
clippingimages.pro, 69
closing operator, 251
color density contrasting, 170
combiningimages.pro, 73

291

292

compression

wavelet transformation, 144
containmenttest.pro, 118
contrast enhancements

IDL routines, 179

overview, 178
contrasting color density, 170
contrastingcellswithradon.pro, 171
control points, 83, 86
converting

datatypes, 13
convolution, 193
copyrights, 2
correcting shifted images, 28
cropping images, 20

code example, 20
cropworld.pro, 20

D

datatypes
converting, 13
imagefiles, 13
DEM
geometric surface object, 52
overlaying images, 50
derivatives
first, 201
second, 204
detecting edges
directional filtering, 201
EDGE_DOG operator, 222
EMBOSS operator, 222
Laplacian filtering, 204
LAPLACIAN operator, 222
PREWITT operator, 222
ROBERTS operator, 222
SHIFT_DIFF operator, 222
SOBEL operator, 222
detecting_edges_doc.pro, 222
Digital Elevation Model. See DEM

Index

dilation operator, 243
Direct Graphics

displaying

transparent images, 84

ROI selection, 101, 105
directional filtering, 201
directionfiltering.pro, 201
displayfft.pro, 133
displaying

frequency transform, 133

Hough transform, 158

images

mapped onto surfaces, 53

Radon transform, 158

time-frequency transform, 148

wrap around, 181
displayslicer3.pro, 43
displayslices.pro, 38
displaywavelet.pro, 148
distance map, 269
distance windowing, 225
domains

frequency, 126

Hough, 126

Radon, 126

spatial, 126

time-frequnecy, 126
drawroiex.pro, 101

E

edge detection
about, 266
directional filtering, 201
Laplacian filtering, 204
EDGE_DOG function
enhancing edges, 222
elevation data, overlaying on surfaces, 50
elevation_object.pro, 50
EMBOSS function
enhancing edges, 222

Image Processing in IDL

enhancing images, 178
equalizing
adaptive, 188
histograms, 185
equalizing.pro, 185
erosion operator
characteristics, 243
examples
image
adaptiveequalizing.pro, 188
arbitraryrotation.pro, 36
backprojecthoughandradon.pro, 161
bytescaling.pro, 181
calculatingstatistics.pro, 77
clippingimages.pro, 69
combiningimages.pro, 73
containmenttest.pro, 118
contrastingcellswithradon.pro, 171
cropworld.pro, 20
detecting_edges_doc.pro, 222
directionfiltering.pro, 201
displayfft.pro, 133
displayslicer3.pro, 43
displayslices.pro, 38
displaywavelet.pro, 148
drawroiex.pro, 101
elevation_object.pro, 50
equalizing.pro, 185
extractcontourinfo.pro, 286

magnifyimage.pro, 26
maponsphere_direct.pro, 57
maskingimages.pro, 65
morphcloseexample.pro, 251
morphdistanceexample.pro, 269
morpherodedilate.pro, 244
morphgradientex.pro, 266
morphhitormissexample.pro, 261
morphopenexample.pro, 248
morphthinexample.pro, 272
morphtophatexample.pro, 254
mriwarping_direct.pro, 85
paddedimage.pro, 23
programdefineroi.pro, 105
regiongrowex.pro, 109
removebridges.pro, 277
removingnoisewithfft.pro, 139
removingnoisewithhanning.pro, 225
removingnoisewithleefilt.pro, 229
removingnoisewithwavelet.pro, 154
reverseimage.pro, 30
rotateimage.pro, 34
scalemask_object.pro, 114
sharpening.pro, 218
shiftimageoffset.pro, 28
smoothingwithmedian.pro, 213
smoothingwithsmooth.pro, 209
transposeimage.pro, 32
watershedexample.pro, 257

extractslice.pro, 41
findinglineswithhough.pro, 165
forwardfft.pro, 129
forwardhoughandradon.pro, 158
forwardwavelet.pro, 145
grouproimesh.pro, 121
highpassfiltering.pro, 198
inversefft.pro, 137
inversewavelet.pro, 151

label regionexample.pro, 282
laplacefiltering.pro, 205

Image Processing in IDL

expanding
image objects, 243
images, 26
export restrictions, 2
extractcontourinfo.pro, 286
extracting
image object information
CONTOUR, 286
LABEL_REGION, 282
volume dlices, 40
extractslice.pro, 41

293

Index

294

F

Fast Fourier transform
See also frequency transform
examples
displayfft.pro, 133
forwardfft.pro, 129
inversefft.pro, 137
transforming to frequency domain, 128
filtering
adaptive, 229
detecting edges, 204
directional, 201
high pass, 197
images, 193
low pass, 194
removing noise, 229
routines, 179
smoothing, 194
windowing, 225
filters
Laplacian, 204
Lee, 229
finding
straight lines, 164
findinglineswithhough.pro, 165
first derivatives, 201
forward transforms
frequency, 128
time-frequency, 145
forwardfft.pro, 129
forwardhoughandradon.pro, 158
forwardwavelet.pro, 145
frequency domain, 126
frequency transform
See also Fast Fourier transform.
displaying, 133
forward, 128
inverse, 136
removing noise, 139

Index

G

geometric area, 97
geometric transformations
IDL routines, 18
gradient operator, 266
grayscale images
data definition, 12
morphological operations, 234
grouproimesh.pro, 121
growing an ROI, 109

H

Hamming window
removing noise, 225
Hanning window
removing noise, 225
high passfiltering, 197
highpassfiltering.pro, 198
histogram
determining stretch/threshold values, 240
using, 184
histogram equalization
adaptive, 188
pixel value contrast, 185
hit-or-miss operator, 261
Hough domain, 126
Hough transform
backprojection, 161
displaying, 158
finding straight lines, 164
projecting, 158

image processing
calculating statistics, 77
geometric transformations, 18
mapping images onto geometry, 47
morphological operations, 234

Image Processing in IDL

references, 16

ROI analysis, 96
shape analysis, 237
techniques, 10

warping transparent images, 85
image registration. See warping images

image See images
image transformations, 18
image transparency, 84
images
accessing, 15
adding a border, 23
calculating statistics, 77
clipping, 69
compression, 144
correcting misalignment, 28
creating boundaries, 257
cropping, 20, 20
datatypes, 13
expanding, 26
file types, 12
first derivatives, 201
flipping, 30
interpolation, 18
magnifying, 26
masking, 62
morphological operations, 234
padding, 23
pixel value location, 73
resampling, 18
resizing, 23, 26
reversing, 30
ROI anaysis, 96
scaling, 26
second derivatives, 204
shifting, 28
shrinking, 26
statistical calculations, 77
thresholding, 241
transparent overlays, 84
transposing, 30, 32

Image Processing in IDL

warping atransparency, 84
indexed images

data definition, 12
intensity histogram, 240
intensity value, 240
inverse transforms

frequency, 136

time-frequency, 151
inversefft.pro, 137
inversewavelet.pro, 151
isosurfaces

of 3D data, 43

K

kernels
directional, 201
high pass, 197
Laplacian, 204
low pass, 194

L

LABEL_REGION function
example, 282
labeling
regions, 282
labelregionexample.pro, 282
laplacefiltering.pro, 205
Laplacian filtering, 204
LAPLACIAN function
enhancing edges, 222
layering images, 48
Leefiltering, 229
legalities, 2
linear transformations, 18
locating
pixel values, 73
low pass filtering, 194

295

Index

296

M

magnifyimage.pro, 26
magnifying an image, 26
mani pul ating volume data
SLICERS3, 43
maponsphere_direct.pro, 57
mapping
images onto a sphere
Direct Graphics, 57
images onto geometry
creating objects, 52
Digital Elevation Model, 50
displaying, 53
IDL objects, 48
IDL routines, 48
Object Graphics, 50
mask area (ROI), 97
masking an image, 62
maskingimages.pro, 65
morphcloseexample.pro, 251
morphdistanceexample.pro, 269
morpherodedilate.pro, 244
morphgradientex.pro, 266
morphhitormissexample.pro, 261

morphological mask. See structuring element

morphological operations
closing, 251
combining operations, 277
dilation, 243
distance map, 269
erosion, 243
gradient, 266
hit-or-miss, 261
IDL routines, 235
opening, 248
structuring element, 234
thinning, 272
top-hat, 254
watershed, 257
morphopenexample.pro, 248

Index

morphthinexample.pro, 272
morphtophatexample.pro, 254
mriwarping_direct.pro, 85

N

noise removal
adaptive filtering, 229
frequency transform, 139
Leefilter, 229
smoothing, 248
time-frequency, 154
windowing, 225

nonlinear transformations, 82

O

object graphics

displaying

transparent images, 84

ROI selection, 99
objects

mapping images onto geometry, 48

region of interest (ROI), 96
opening operator, 248
operators

closing, 251

dilation, 243

erosion, 243

gradient, 266

hit-or-miss, 261

opening, 248

thinning, 272

top-hat, 254

watershed, 257
optical distortion correction, 82
overlaying images

on geometries, 48

Image Processing in IDL

P

paddedimage.pro, 23
padding images

borders, 23

morphological processing, 243
peak detector. See top-hat operator
pivoting in rotation, 36
pixels

locating by value, 73
planar slicing

interactively, 42

volumes, 38
PREWITT function

enhancing edges, 222
programdefineroi.pro, 105
projecting

Hough transform, 158

Radon transform, 158

R

Radon transform
backprojecting, 161
contrasting color, 170
displaying, 158
overview, 126
projecting, 158

region growing
REGION_GROW function, 109

region labeling, 282

region of interest. See ROI

regiongrowex.pro, 109

removebridges.pro, 277

removing noise
adaptive filtering, 229
frequency transform, 139
Leefilter, 229
time-frequency transform, 154
windowing, 225

removingnoisewithfft.pro, 139

Image Processing in IDL

removingnoisewithhanning.pro, 225
removingnoisewithleefilt.pro, 229
removingnoisewithwavelet.pro, 154
resizing images, 23, 26
cropping, 20
reverseimage.pro, 30
reversing
images, 30, 32
RGB images
data definition, 12
ROBERTS function
enhancing edges, 222
ROI
data
geometric and mask areas, 97
determining point location, 118
geometric area, 97
grouping multiple ROIs, 121
growing an area, 109
interior, 101
mask area, 97
masking an area, 114
routines, 96
selecting
interactively, 99
programmatically, 105
surface mesh, 121
rotateimage.pro, 34
rotating
images
90 degree increments, 34
arbitrary increments, 36
pivot point, 36
rubber sheeting. See warping images

S

scalemask_object.pro, 114
scaling

See also stretching

byte, 181

297

Index

298

images, 26

stretching images, 242
second derivatives, 204
segmenting image features, 73
setting

pivot points, 36
shape analysis, 237
shape detection, 234
sharpening an image, 197, 218
sharpening.pro, 218
shift correction, 28
SHIFT_DIFF function

enhancing edges, 222
shiftimageoffset.pro, 28
shifting

images, 28
shrinking

image objects, 243

images, 26
dicing volumes

extracting adlice, 40

series of slices, 38
smoothing

average values, 209

dilation/erosion, 251

erosion/dilation, 248

low pass filtering, 194

median values, 213
smoothingwithmedian.pro, 213
smoothingwithsmooth.pro, 209
SOBEL function

enhancing edges, 222
gpatial domain, 126
statistics

image processing calculations, 77

masking, 77
stretching

intensity values, 242

scaling images, 242
structuring element, 234, 237, 261
surfaces

Index

overlaying images, 48
triangulated ROI mesh, 121

T

texture mapping.
See mapping, images onto geometry
thinning operator, 272
thresholding
clipping levels, 69
intensity, 241
intensity values, 240
masking features, 64
ROI analysis, 105
tie points. See control points
time-frequency domain, 126
time-frequency transform
displaying, 148
forward, 145
inverse, 151
removing noise, 154
top-hat operator, 254
trademarks, 2
transformations
geometric, 18
linear, 18
nonlinear, 82
warping, 82
transforms
frequency
displaying, 133
forward, 128
inverse, 136
removing noise, 139

Hough
backprojecting, 161
displaying, 158
finding straight lines, 164
projecting, 158

IDL routines, 127

Radon

Image Processing in IDL

backprojecting, 161
contrasting color, 170
displaying, 158
projecting, 158
time-frequency
displaying, 148
forward, 145
inverse, 151
removing noise, 154
transparency
displaying in Direct Graphics, 84
transparent image overlays
creating, 84
Direct Graphics, 85
transposeimage.pro, 32
transposing an image, 30, 32
triangulating surface meshes, 121

Vv

volumes

Image Processing in IDL

manipulating, 43

dicing, 38
volumetric data

SLICER3 display, 43

W

warping images

Direct Graphics display, 85

routines, 82

selecting control points, 83
watershed operator, 257
watershedexample.pro, 257
wavelet transform

see al so time-frequency transform
windowing

distance, 225

Hamming, 225, 225

Hanning, 225
wrap around displays, 181

299

Index

	Search Documentation
	Image Processing
	Contents
	Introduction to Image Processing in IDL
	Overview of Image Processing
	Understanding Image Definitions in IDL
	Representing Image Data in IDL
	Accessing Images
	References

	Transforming Image Geometry
	Overview of Geometric Transformations
	Cropping Images
	Padding Images
	Resizing Images
	Shifting Images
	Reversing Images
	Transposing Images
	Rotating Images
	Planar Slicing of Volumetric Data

	Mapping an Image onto Geometry
	Mapping Images onto Surfaces Overview
	Mapping an Image onto Elevation Data
	Mapping an Image onto a Sphere

	Working with Masks and Image Statistics
	Overview of Masks and Image Statistics
	Masking Images
	Clipping Images
	Locating Pixel Values in an Image
	Calculating Image Statistics

	Warping Images
	Overview of Warping Images
	Creating Transparent Image Overlays
	Warping Images Using Direct Graphics

	Working with Regions of Interest (ROIs)
	Overview of Working with ROIs
	Defining Regions of Interest
	Displaying ROI Objects in a Direct Graphics Window
	Programmatically Defining ROIs
	Growing a Region
	Creating and Displaying an ROI Mask
	Testing an ROI for Point Containment
	Creating a Surface Mesh of an ROI Group

	Transforming Between Domains
	Overview of Transforming Between Image Domains
	Transforming Between Domains with FFT
	Transforming Between Domains with Wavelets
	Transforming to and from the Hough and Radon Domains

	Contrasting and Filtering
	Overview of Contrasting and Filtering
	Byte-Scaling
	Working with Histograms
	Filtering an Image
	Smoothing an Image
	Sharpening an Image
	Detecting Edges
	Removing Noise

	Extracting and Analyzing Shapes
	Overview of Extracting and Analyzing Image Shapes
	Determining Structuring Element Shapes and Sizes
	Determining Intensity Values for Threshold and Stretch
	Eroding and Dilating Image Objects
	Smoothing with MORPH_OPEN
	Smoothing with MORPH_CLOSE
	Detecting Peaks of Brightness
	Creating Image Object Boundaries
	Selecting Specific Image Objects
	Detecting Edges of Image Objects
	Creating Distance Maps
	Thinning Image Objects
	Combining Morphological Operations
	Analyzing Image Shapes

	Index

	PDFCover.pdf
	Legal and Copyright Notices
	Limitation of Warranty
	Permission to Reproduce Manuals
	Export Control Information
	Copyright and Trademark Notices

	PDFCover.pdf
	Legal and Copyright Notices
	Limitation of Warranty
	Permission to Reproduce Manuals
	Export Control Information
	Copyright and Trademark Notices

