
The Role of Commercial
Software in an Open

Source World

Zachary Norman
Daniel Platt

Harris Corporation

The Role of Commercial Software in an Open Source WorldNon-Export Controlled Information

The Role of Commercial
Software in an Open
Source World

ABSTRACT

One of the greatest achievements of the Information Age has
been the ease-of-access to information, including Open Source
Software (OSS) packages. With the rise of OSS and drive to
reduce costs in today’s world, there is a growing dichotomy
between Commercial Off-the-shelf Software (COTS) and OSS
alternatives. Because the pros and cons of COTS vs OSS solutions
can be one of personal preference and have no clear-cut solution
as to which is better, it is proposed that minimizing costs and
understanding the difference between COTS and OSS be used as
the metrics to help individuals and organizations make the choice
that best fits their needs. In addition to this, there may be a
middle ground where COTS and OSS are used in conjunction with
one another and a broad, open source policy for NASA could cost
more than creating open source solutions on top of existing COTS
offerings.

Index Terms—Commercial Software, Challenges, Comparison,
Open Source Software

Introduction and Background
Today we live in a world where many have grown accustomed
to having instant access to information without the need to
search through books or become experts on different subjects.
The same is also true for software on our computers: there
are opensource projects for nearly every type of application
available today.

These Open Source Software (OSS) packages vary widely in
application and complexity. Several prominent examples
are Python, Node.js, R, and Linux/Unix distributions. Even
this paper was generated using the OSS tools Tekmaker and
MiKTeX which are easy to acquire and use. The use of OSS can
increase productivity and provide a faster reaction time for
organizations[1].

There are several distinguishing factors between OSS packages
and Commercial Off-theshelf Software (COTS). The major
differences are that users of OSS will have access to the source
code and consumers have the right to freely distribute the
software[2]. Apart from these two elements of OSS, COTS
software typically involves a business model based upon
proprietary software that may entail license sales, product
subscriptions, premium support, or consulting. The business
model for COTS software varies by industry, but the primary
focus is generally software sales and maintenance.
With easy access to open-source software and more
pressure than ever to cut costs across businesses and sectors,
individuals and organizations are facing the problem of how
to reduce capital expenses while maintaining the same level
of productivity. One simple way to do this is to remove the
acquisition of COTS tools from budgets and replace the COTS
tools with free, open-source alternatives.

2

The Role of Commercial Software in an Open Source WorldNon-Export Controlled Information

For some organizations this may be feasible, but it can depend
on a multitude of factors, many of which are related to cost.
This paper will explore some of the many costs associated
with open-source software to help make individuals and
organizations make educated, informed decisions on the
software that they choose to use.

BUILDING OSS SOLUTIONS
Before diving into some of the challenges that can be
encountered when developing OSS, we have identified two
different development routes when creating OSS. These two
scenarios are: creating OSS from scratch or building OSS on top
of an existing framework or solution.

The cost of creating a software package from scratch will far
exceed that of simply making additions to an existing software
solution. The majority of the costs will arise from the initial
development in creating the framework to be used along with:
testing, debugging, and documenting the solution. These are all
important aspects of any software solution to make sure that it
is rigorous and users can be successful with the developed tools.

The other option for OSS development is to build on top of an
existing framework which can some from OSS or COTS software.
An example of this would be creating libraries for Python or
the Interactive Data Language (IDL) that are released to the
public. This option is ideal because it allows users to focus more
on developing algorithms and science instead of a framework
for software development. Building OSS on top of an existing
framework, whether COTS or OSS, also reduces risk as many
bugs will likely have been discovered and fixed already which
will reduce the initial investment. However, it is still important
that the algorithm developers follow their due diligence to
create tests and document their solution even when creating
OSS on top of an existing platform.

Customer Base
Another important factor when developing OSS is what user
group you want to cater to. The user group can be defined as
the developer who may be creating the tool for themselves or
the general public. It is important that all individuals have equal
access to software solutions that have been developed. If these
software solutions can only be interacted with programmatically
and do not have a user interface (UI), then the number of
individuals who can easily use the suite of tools will be greatly
reduced. This is important to consider because, when it comes
to software development, a UI can take a significant amount of
development effort to handle the logic that a few lines of code
can accomplish.

The Role of Commercial Software in an Open Source WorldNon-Export Controlled Information

OSS COSTS
OSS can initially be enticing because there is no capital
expenditure to acquire the software. Unfortunately the costs
for open source software are related to investing time and
how much effort it takes to develop and maintain a solution.
Additionally, depending on the type of OSS that is developed,
there are going to be different costs. Note that some of these
costs are also present when selecting and evaluating COTS
software packages.

Software Development Skills
Time and effort will need to be spent educating developers
on the best practices of software development including
methodologies and concepts, tools, and coding practices. This
applies mostly when developing an OSS solution from scratch
without a preexisting framework build upon. This is true because
OSS varies in quality and, if you want to encourage individuals to
use your tools, then developed OSS needs to have high standards
to ensure positive user experiences.

It should be noted that troubleshooting skills are also key
for being successful when using OSS for development. Some
problems that can be encountered are: library incompatibilities,
installation issues, and software bugs. In order to move past
these blocks it is important to have the personnel to support
developers or that the developers have the skills to account for
any issues that are encountered. This may require developers
to learn new skills or to hire new personnel to help keep the
software development going which will increase the amount of
time, and therefore cost, of developing OSS.

Software Selection
Compared to COTS software, when choosing an OSS package
there are likely going to be many sources to evaluate and
compare against one another. This can be challenging because
there may not be time to properly evaluate a software option[3].
This can be further complicated if there are multiple forks,
or separate versions, of the same OSS that each need to be
evaluated[4]. The lack of time and too many options can then
become even more problematic because the quality of open
source software can vary from beginner exercises to paid
development[5]. In practice, this can translate to bumps in the
road during development when you may run into bugs or
missing features.

An additional challenge when selecting OSS is that the
maintainers may eventually drop support leading to an uncertain
future[6]. If an unsupported OSS is critical to development, then
additional resources may be needed to maintaining new code or
efforts will need to be made to find a replacement. This may not
be as much of a problem for larger OSS projects, but is still an
important consideration in the selection process.

Software Support

The Role of Commercial Software in an Open Source WorldNon-Export Controlled Information

A potential set of challenges when using OSS in practice can
be software support. This includes: documentation, technical
support, and feature requests.

In practice, one of the biggest differences between COTS and
OSS is the documentation that has been developed. When
purchasing COTS software, there is generally going to be a
high level of documentation that has been developed to help
guide the user. With OSS, this may not always be the case,
or the documentation could be lacking examples to help
beginners quickly get started. It should be noted that mature
OSS does tend to have better quality documentation[3].
Although documentation can be a challenge, one of the
benefits of OSS is that there can be an active user community
that is willing to help. If you are using OSS without an active
community or large user base, then it can be challenging to
get assistance and can increase the cost to learn how to use
the software and slow down the development process.
In practice, challenges can also arise for OSS installation
and setup. Sometimes these issues can be non-trivial to
troubleshoot and solve. Without a dedicated technical
support team users can spend hours trying to get OSS up and
running.

Another challenge that OSS users may encounter is
customizing the original software. If a user needs an addition
or new feature, then they can attempt to have the changes
included in the project. This can be difficult at times to have
the changes accepted and, if they are not accepted, then the
user will have to maintain a forked version of the original
OSS with the features that they need[8]. With this in mind, it is
also important to select OSS that allows for customization.
One of the challenges with all software packages is that
a given solution may not fit every need[1]. This is why it is
important to select COTS or OSS that allows for customization
or extension. This way software can be developed that fits the
exact user need to help improve efficiency and quality.

OSS IN PRACTICE
The software development cycle can be sped up significantly
by using projects that have a solid foundation. This is even
true for commercial entities that use many OSS tools for
development and testing. We have had much experience
using and succeeding with OSS such as Angular and Node.
js for developing web applications. Through our use of
these popular OSS tools, we encountered: incomplete
documentation for some packages and components, libraries/
packages that had bugs which required workarounds, and
framework bugs for different operating systems (Linux and
Windows).

The Role of Commercial Software in an Open Source WorldNon-Export Controlled Information

It was expected that some issues would be encountered and,
because the software is completely free, it is nothing to be
upset or surprised about. One of the major differences
between COTS and OSS is that, with OSS, what you see
is what you get. If you want a change then you are likely
going have to make the change yourself. This is even more
true when your project is time limited: you may not have the
luxury of waiting for a feature to be added to OSS (or COTS
software) before a deadline.

One challenge with web development that may not apply
to other programs or OSS, is that the industry is changing
very fast. This means that, when frameworks such as Angular
release a new version, there may be compromises on what
packages are ready to use with the updated framework. In
these situations you can be at the mercy of OSS maintainers
to update and test their code so that it works with the
newest version of a framework.

ADDITIONAL CONSIDERATIONS
A fundamental challenge to organizations that have been
around for a while is that there are likely legacy code
bases built upon existing COTS packages. If the goal of an
organization is to migrate existing technology to OSS, it
doesn’t always make sense to re-write this code. There will
likely be new bugs created and there may not be an OSS
equivalent which can lead to a loss of features/functionality.
For example, the ENvironemnt for Visualizing Images (ENVI)
is a COTS product produced by Harris Geospatial Solutions
for remote sensing and image processing applications.
Although there are some open source alternatives,
the existing OSS lacks the complete functionality and
extensibility that ENVI provides out of the box. Using OSS
with a lack of functionality will incur costs to develop the
features that are needed and projects will move at a slower
pace while users learn how to use new tools. Note that
the OSS alternatives to COTS software packages do vary by
industry and the example above will not always hold true.

CONCLUSION
The choice between OSS and COTS software is not a simple
one: there are many factors at play and the solution will
likely change from organization to organization. Some of
the factors that affect software development with OSS will
also apply to COTS software as well. Because of this, it is
important that decisions be made with thorough research
to fully understand the implications from choosing one over
the other. Through research and real world experience,
we believe that you may also achieve a balanced solution
through using COTS and OSS.

The Role of Commercial Software in an Open Source WorldNon-Export Controlled Information

Instead of a black and white answer to COTS vs OSS,
we propose that there can be a middle ground where
appropriate. One of the challenges with some COTS software
packages is that the base product is not extendable and this
can be a significant reason to choose OSS. However, if a COTS
product is easily extendable and can be made to fit user
needs, then the thorough testing, documentation, support,
and the initial starting point can be a great benefit that
reduces the cost and time for creating a solution from scratch.
In addition to this, COTS software can also integrate well with
OSS which can allow developers to take advantage of OSS
within COTS tools.

Here are two examples of software developed by Harris
Geospatial Solutions that blend COTS and OSS together
in a symbiotic relationship. For example, in the COTS
programming language IDL, there is a bi-directional IDL-
Python bridge which allows IDL users to ingest and execute
Python code directly. This can be beneficial if an algorithm is
already present in Python, a developer of IDL will not need
to re-write the algorithm in a different language. In addition
to this, other types of COTS software can be entirely built
upon OSS and, when you have the COTS software, you also
have access to all of the source code. An example of this is the
Geospatial Services Framework (GSF) which is built on Node.
js. When you have GSF installed, you can see each line of code
and, if you have the proper skill sets, you can make changes
to the software to customize it for your needs without the
need for feature requests or consulting help.

Although OSS can be enticing because it is free, there
are still costs which will be mostly tied to investments in
employee time. It can take a considerable amount of effort
and technical skills to integrate OSS solutions together and
create new tools from scratch. While COTS software requires
an initial investment, it can drastically reduce the time to
develop solutions and provide official support and quality
documentation. The solutions built on top of COTS software
can also be released as OSS that other users can access. If OSS
is built on a COTS product that is widely used, then many
individuals will still have access to the tools.

With so many factors to consider when choosing COTS or
OSS, ultimately everything comes down to cost and properly
evaluating options. Because there are so many solutions
to this problem, it is recommended that a broad, open
source policy for NASA not be chosen when there are some
situations that COTS software can play a positive role in
science and algorithm development.

Harris is a registered trademark of Harris Corporation.
Trademarks and tradenames are the property of their respective companies.
© 2018 Harris Corporation 12/2018 VIS-AL

REFERENCES

[1]

Chuck Cohn.”Build vs. Buy: How to Know When You Should Build Custom
Software Over Canned Solutions.” Internet: https://www.forbes.com/sites/
chuckcohn/2014/09/15/buildvs-buy-how-to-know-when-you-should-build-
customsoftware-over-canned-solutions, Sep. 15, 2014 [Jan. 9, 2018].

[2]
”The Open Source Definition”. Internet: https://opensource.org/osd, Mar. 22, 2007
[Jan. 8, 2018].

[3]
Ayala, C., Hauge, O., Conradi, R., Franch, X., Li, J., and Velle, K.S.: Challenges of
the Open Source Component Marketplace in the Industry. Proc. Fifth IFIP WG 2.13
International Conference on Open Source Systems, 2009.

[4]
Bac, C., Berger, O., Deborde, V., and Hamet, B.: Why and how to contribute to
libre software when you integrate them into an in-house application?, Proceedings
of the First International Conference on Open Source Systems, 2005.

[5]
Linux Foundation. ”6 Reasons Why Open Source Software Lowers Development
Costs.” Internet: https://www.linuxfoundation.org/blog/6-reasons-why-open-
source-software-lowers-development-costs/, Feb. 28, 2017 [Jan. 9, 2018].

[6]
Bac, C., Berger, O., Deborde, V., and Hamet, B.: Why and how to contribute to
libre software when you integrate them into an in-house application?, Proceedings
of the First International Conference on Open Source Systems, 2005.

[7]
Conlon, P., and Carew, P.: A Risk Driven Framework for Open Source Information
Systems Development, First International Conference on Open Source Systems,
2005.

[8]

Hauge, Ø., Sørensen, C.-F., and Røsdal, A.: Surveying Industrial Roles in Open
Source Software Development: Open Source Development, Adoption and
Innovation (2007).

