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A B S T R A C T   

Landslides originating from remote steep slopes render people living downhill vulnerable, unaware of the 
impending danger. Identifications of slow-moving mountain slopes are possible now due to time series mea
surement from space using microwave satellite data and the InSAR technique, which potentially can detect 
displacement at millimetre level. Availability of open-source Sentinel-1 data has revolutionised the study 
involving landslide kinematics and predicting the time of failure. However, identification of accelerating trend, 
demarcation of release area and prediction of flow path after failure initiation are still challenging. In this paper, 
we present a novel method for time and path prediction of landslides using two large landslides (Kikruma and 
Kotropi) located in the Himalayas in India. Sentinel-1 data stack was processed using the Persistent Scatterer and 
Small Baseline Subset interferometric techniques to analyse the trend of ground deformation leading to slope 
failures. The displacement time series of the measurement points, analysed using inverse velocity and modified 
inverse velocity methods, show that the instability had commenced almost a year or more with the final onset of 
acceleration triggered by heavy rainfall, couple of weeks prior to the actual failure. The acceleration image 
created from displacement time series data was clustered using image segmentation techniques to demarcate the 
release area of landslides. The flow simulation was done using the Voellmy friction model with a high-resolution 
DEM to predict the flow path. The analysis done for Kikruma and Kotropi landslide case studies with the pro
posed method provided a safe prediction of the time of landslide with ~90% accuracy of the flow path pre
diction. Results show that the method demonstrated in this study may evolve as an effective tool for landslide 
early warning in hilly areas.   

1. Introduction 

Landslides are among the main natural catastrophes, which cause 
major problems in mountainous terrain by killing hundreds of people 
every year besides damaging property, blocking transportation and 
disrupting communication links. In some areas, such as the western 
coastal parts of North and South America, Central America, Alpine re
gions of Italy, France, Switzerland and Austria in Europe, Himalayan 
regions of India and Nepal in Asia and parts of Central Asia, the effects of 
landslides are more pronounced mainly due to spurred developmental 
activities to meet the ever-growing demand of people (Petley, 2013). As 
per the official figures, between 1998 and 2017, landslides have caused 
more than 18,000 deaths worldwide1. A recent study by Froude and 
Petley (2018) on global fatal landslides showed that the spatial distri
bution of landslides is heterogeneous, with Asia representing the 
dominant (75%) geographical area. As per this study that collated a non- 

seismic landslide database, India ranks first among all nations in the 
world in terms of number of fatal landslides. Hence, there is an urgent 
need to formulate strategies for minimising the impact of landslides. 
Prediction of the occurrence of landslide event in time and space re
mains a challenge owing to the inherent landslide process complexities. 
However, with advanced remote sensing measurements coupled with 
numerical simulation, broad predictions about the day of occurrence 
and path or propagation of material with its important behavioural 
parameters could be estimated which can assist damage assessment 
(Bekaert et al., 2020; Zhang et al., 2012; Strozzi et al., 2005; Dong et al., 
2018; Hu et al., 2020a, 2020b; Mondini et al., 2021). 

Differential InSAR is a proven technique for measuring surface 
deformation induced by various geophysical phenomena such as 
earthquakes, volcanoes, landslides and over-exploited aquifers (Carnec 
et al., 1996; Rott et al., 1999; Raspini et al., 2018; Amelung et al., 2000; 
Bürgmann et al., 2000; Strozzi et al., 2005; Motagh et al., 2008). 
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However, InSAR is limited by temporal and geometrical decorrelations 
(Zebker and Villasenor, 1992) and atmospheric delay anomalies (Mas
sonnet and Feigl, 1998). In the last 20 years, multi-temporal InSAR 
technologies (e.g. Persistent Scatterer Interferometry (PSI), Small 
Baseline Subset (SBAS)) were developed to overcome such limitations by 
using large number of SAR images for computing displacement time 
series (Ferretti et al., 2001; Berardino et al., 2002). PSI and SBAS have 
acquired wide popularity in the last decade in terms of deformation 
monitoring (Berardino et al., 2002; Ferretti et al., 2001; Kampes and 
Hanssen, 2004; Casu et al., 2006; Prati et al., 2010). These techniques 
process radar images acquired over the same area, but at a different time 
period, and measure deformation through interferometric methods 
(Singh Roy et al., 1998; Ferretti et al., 2007). The number of SAR images 
should be large and coherent with one another to monitor displacements 
accurately within the time period. These methods when applied on a hill 
slope areas can indicate movement over time which may eventually lead 
to a failure. Therefore, PSI and SBAS methods are extensively used in 
landslide studies, such as landslide investigation and identification (Yin 
et al., 2010; Del Soldato et al., 2018; Bonì et al., 2018), landslide in
ventory mapping and activity assessment (Righini et al., 2012; Cigna 
et al., 2013), slow landslide displacement monitoring, mapping of 
landslide areas and understanding landslide kinematics (Herrera et al., 
2011; Zhao et al., 2018; Lu et al., 2012; García-Davalillo et al., 2014; 
Schlögel et al., 2015;Rosi et al., 2018). 

The velocity time series of slope movement can be directly used to 
predict the time of failure of the slope (Intrieri et al., 2017). The time of 
failure (tf) can be predicted using mathematical formulations of which 
the most widely used in the domain of landslide prediction is the Inverse 
Velocity (INV) method (Fukuzono, 1985a&b). As per the creep theory, 
an ideal landslide deformation-time curve shows three stages of defor
mation i.e. primary, secondary and tertiary, correlating to an initial slow 
deformation stage, an intermittent steady deformation stage and a final 
accelerated deformation stage, respectively (Crosta and Agliardi, 2003; 
Saito, 1996). The INV method predicts the landslide failure time by 
linearly fitting the distribution of the inverse velocity estimates in the 
third stage of a creep. The INV method was further modified by Zhou 
et al. (2020) as the Modified Inverse Velocity (MIV) method to enhance 
the accuracy of prediction of tf, by extending the formulation of the 
earlier method. However, the precise application of these methods in
volves accurate and reasoned identification of representative locations 
on the landslide body (through PSI and SBAS), which shows the clear 
onset of the tertiary stage of deformation (acceleration). 

In addition to the time prediction of failure, it is also necessary to 
model the runout of the landslide in space, so as to understand the extent 
of the flow and the consequent affected area. Runout modelling mainly 
depends upon the characteristics of release area and runout path, type of 
triggering process and lastly on the type and volume of material 
deposited (Luna et al., 2013). Runout prediction models can be empir
ical, statistical, physical or dynamically based, depending on the avail
able input (Schraml et al., 2015). Empirical-Statistical based approaches 
were developed to model runout path using flow volume (Guthrie and 
Befus, 2021; Tang et al., 2012) and require limited ground information 
while physically based dynamic model mostly depends upon fluid me
chanics equations and significant amount of ground information. The 
Rapid Mass Movement Simulation (RAMMS ©) which is based on a 2-D 
Voellmy-fluid friction model has found wide applications in the simu
lation of mass movements, especially snow avalanches, rockfall and 
debris flow (Kumar et al., 2018; Bovis and Jakob, 1999). The model 
takes single or multiple blocks as release area (initiation) and uses two 
parameters of Voellmy relation to describe the frictional behaviour of 
the flow (Mergili et al., 2017; Berger, 2010; Berger et al., 2011; Rick
enmann, 1999). Defining an accurate release area for a hill slope debris 
flow is a challenging aspect of the model as it provides useful informa
tion about the total volume, flow velocity, flow height and total 
pressure. 

In this study, we demonstrate a novel method for time and path 

prediction of landslides using PSI, SBAS and numerical simulation of 
debris flows using RAMMS. We showcase the results for the Kikruma and 
Kortropi landslides which occurred in the state of Nagaland and Hima
chal Pradesh, respectively, in India. We decipher the motion of slope 
material from the PSI and SBAS derived displacement time series and 
identify areas of instability from the measurement points (MP). We use 
the velocity-time series to estimate the time of failure using INV and MIV 
methods (Fukuzono, 1985a, 1985b; Zhou et al., 2020). We further 
demonstrate the constraints of each method, especially when used in 
tandem with PSI and SBAS. Further, from the accelerating MP image, we 
demarcate the release area using an image segmentation method. The 
release area is used to model the runout extent of the flow using RAMMS. 
The results are then compared with the actual ground scenario to 
demonstrate the applicability of the method. 

2. Study areas 

The Himalayas extending across the Indian subcontinent host a 
diverse suite of rock types and structural discontinuities vulnerable to 
landslides (Martha et al., 2021). Therefore, the mechanism and geom
etry of slope failures vary from northwest to northeast of India. To create 
a representative workflow of landslide time and path prediction, test 
cases from both the north-western and north-eastern India need to be 
studied and demonstrated. We have therefore chosen two cases namely 
the Kikruma landslide from the eastern Himalaya and the Kotropi 
landslide from the western Himalaya in India. 

2.1. Kikruma landslide 

A large landslide was triggered on 29 July 2018 near Kikruma village 
in Phek district of Nagaland, resulting in the formation of an artificial 
dam on the Sidzu River causing an imminent threat to the habitations 
downstream (GSI, 2018). The landslide is located on the northern part of 
the Kikruma village2. 

The Kikruma landslide is located at 25◦36′15.5′′N latitude and 
94◦13′19.5′′E longitude (Fig. 1a and b).The lithology around the land
slide comprises highly shattered, sheared sequences of grey splintery 
shale, lensoidal fine-grained sandstones with greywacke and rhythmites 
of Upper Disang Formation3.The landslide has occurred along a west- 
facing slope of the N-S trending ridge. The length, width and height of 
the landslide are 1200 m, 600 m and 470 m, respectively. The failure 
mechanism is deep translational (planar). 

2.2. Kotropi landslide 

On 13 August 2017, a massive landslide occurred near the Kotropi 
village (near Kotropi bus stop) in the Mandi District of Himachal Pradesh 
(Fig. 1c and d). The landslide occurred on National Highway 154, be
tween Mandi and Pathankot (Roy et al., 2018; Pradhan et al., 2019). 

The Kotropi landslide is located at 31◦ 54′ 43.6′′N latitude and 76◦53′

16.4′′E longitude lying within the Lesser Himalayas with an altitude 
variation of about 350-1500 m. Greenish Shale with Purple Mudstone 
belonging to the Dharamshala Group is present in the inaccessible upper 
part of the main body of landslide. The study area falls in a thrust contact 
zone (Main Boundary Thrust) between the Shali and the Lower Tertiary 
group of rocks such as mudstones, dolomites, purple clay, micaceous 
sandstones and brick red shale (Pradhan et al., 2019). The landslide is a 
mixed ‘debris flow’ type with a rotational failure mechanism near the 
crown. It has a long runout zone which clearly suggests that heavy 
rainfall is the main triggering factor. The area of the landslide is 

2 Kikuma landslide media report : www.morungexpress.com(accessed on 
11Feb, 2021).  

3 Geological map of India in 1:50000:www.bhukosh.gsi.gov.in (accessed on 
10 January, 2021). 
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Fig. 1. a. Pre-event satellite image of Kikruma Landslide b.Post-event satellite image of KikrumaLandslide.c. Pre-event satellite image of Kotropi Landslide. d.Post- 
event satellite image of Kotropi Landslide.Insets show location of landslide on India map.(Source:Google Earth). 

P. Roy et al.                                                                                                                                                                                                                                      



Remote Sensing of Environment 271 (2022) 112899

4

133,674 m2 and the width of the landslide is 190 m and the runout 
length is 1155 m. 

3. Material and methods 

3.1. Sentinel-1 imagery 

Sentinel-1 is a Synthetic Aperture Radar (SAR) mission, providing 
continuous all-weather, day-and-night imagery in C-band with a centre 
frequency of 5.4 GHz, operating in four exclusive imaging modes with 
different spatial resolutions and coverages4. Sentinel-1 has been suc
cessfully used in Earth surface deformation monitoring worldwide (Bui 
et al., 2021). Data products are available in single polarisation (VV or 
HH) for Wave mode and dual polarisation (VV + VH or HH + HV) and 
single polarisation (HH or VV) for Stripmap (SM), Interferometric wide 
(IW) and Extra wide (EW) swath modes. In IW mode, Sentinel-1A, which 
was launched in April 2014, can map global landmasses once every 12 
days. The launch of Sentinel-1B in April 2016 enabled a two-satellite 
constellation that can deliver a six-day repeat cycle. Sentinel-1 inter
ferometric products also help to ensure a high density of persistent 
scatterers to provide velocity (line of sight) measurements. We have 
selected the images from first available data till the date of failure for 
InSAR analysis. The available archive of Sentinel-1, including 42 images 
and spanning the time interval from 21 March 2017 to 26 July 2018 
(three days prior to slope failure), has been processed for the Kikruma 
landslide. Similarly, 42 images spanning the time interval from 15 
November 2015 to 12 August 2017 (one day prior to slope failure), have 
been processed for the Kotropi landslide. PSI and SBAS processing was 
carried out using SARSCAPE © software (SARMAP, 2012). Images have 
been captured along satellite track number 143 in ascending orbit for 
Kikruma and along satellite track number 136 in descending orbit for 
Kotropi with an incidence angle of ~30◦ to 40◦. The Sentinel-1 datasets 
over the two areas of interest are available at an interval of 12 days. 

3.2. Delineation of instability using PSI and SBAS 

The purpose of the InSAR analysis here was to retrieve information 
on ground deformation, with a particular focus on the identification of 
possible precursory motion of the Kirkuma and Kotropi landslides. We 
used PSI and SBAS methods to understand the ground deformation and 
generate the displacement time series of the MPs. We attempted both the 
methods and combined the result to ensure a uniform distribution of 
resultant MPs and cross validate the deformation trends of both the 
methods towards prediction of the time of failure. The PSI method is 
intended for the analysis of point targets. The number of acquisitions is 
crucial for coherence estimation, which, in turn enables the identifica
tion of a suitable number of PS. Since the image covers a 250 km swath, 
the subset covering the landslide was selected using the “sample selec
tion SAR geometry tool”. This is a predefined module in the SARSCAPE 
environment which is used to subset the data using a user defined area of 
interest. Shuttle Radar Topographic Mission (30 m) global Digital 
Elevation Model (DEM) was used to eliminate the topographic phase. 
Five major steps are involved for processing Sentinel-1 data using the 
PSI technique through the SARSCAPE © environment. The first step is a 
connection graph wherein the best primary image is selected automat
ically by the software among all the acquisitions on the basis of the most 
reliable connections between them. The position and distance plots are 
generated for all the secondary images with respect to the primary 
image. After the suitable selection of the primary image, the interfer
ometry process was applied and differential interferograms for all sec
ondary images with respect to primary image were generated. Image to 
image coherence is a key criterion for appropriate PS generation and 

distribution. In the case of landslide related ground displacements, slope 
material and vegetation cover tends to lower the coherence. Therefore, 
for our study we have adopted a coherence threshold of 0.60 for both 
study areas. Displacement, velocity and coherence will be generated 
from these interferograms in the first and second inversions step leading 
to the identification of PS. The first inversion estimates the residual 
height with displacement and velocity. They are used to flatten the 
complex interferograms. The second inversion uses a linear model to 
estimate the atmospheric phase components. The linear model is sub
tracted from all differential interferograms in order to refine the velocity 
and residual height values (SARMAP, 2012). 

On the other hand, the SBAS technique relies on a network selection 
of the SAR data pairs to generate interferograms. SBAS is advantageous, 
as a network of redundant interferograms is used to reduce the noise in 
the resultant deformation time series (Bui et al., 2020). They are char
acterised by a small temporal and spatial separation (baseline) between 
the orbits in order to limit the noise effects referred to as decorrelation 
phenomena (Ferretti et al., 2001, Lauknes et al., 2011). The SBAS 
method measures deformations of a combination of distributed targets 
(i.e. low intensity scatterers) and dominant targets (i.e. high intensity 
scatterers) such as large rock faces, from the filtered and unwrapped 
phases (Lauknes et al., 2011).The second step of the procedure involves 
the retrieval of the original (unwrapped) phase signals from the modulo- 
2π restricted (wrapped) phases directly computed from the interfero
grams. The SBAS processing chain consists of extending the analysis to 
those resolution cells where the information has some temporal gaps 
because of the signal decorrelation, leading to coherence values smaller 
than the acceptable threshold. Therefore, we have used a coherence 
threshold equal to 0.3 in our analysis. Further, the perpendicular base
line thresholds for SBAS processing is kept at 4% of the threshold of the 
critical baseline (Dun et al., 2021). We have provided the interferogram 
networks and mean coherence maps in supplementary material 1. Given 
that both the landslides are slow moving, a trade-off of temporal base
line was required to capture the deformation signal vis-a-vis coherence 
loss. Therefore, we have optimally selected 75 days as the temporal 
baseline threshold (SARMAP, 2012; Dun et al., 2021).We have provided 
the interferogram networks as supplementary material 1. In InSAR data 
processing, filtering can be applied in various steps to reduce the noise in 
interferograms (Goldstein and Werner, 1998) or in resultant deforma
tion time series (Khaki et al., 2020). We have used Goldstein filtering 
algorithm during the interferogram generation to reduce phase noise as 
much as possible. As the study areas are mountainous and have vege
tation cover, we have set the minimum and maximum filtering thresh
olds to 5 and 8, respectively (Dun et al., 2021). 

The crucial step of the SBAS approach is the inversion of the 
unwrapped interferograms for the deformation time series retrieval. 
Further, availability of space/time information enables the detection 
and subsequently filtering of possible atmospheric artefacts. 

The last step of the PSI and SBAS process is geocoding, in order to 
produce the geocoded shapefiles and/or raster files. In addition to the 
geocoded products, a shapefile of the MPs is generated with attribute 
information containing line of sight (LOS) displacement (Dlos) for each 
observation date. This is used to generate the displacement time series 
and estimate LOS velocities (Vlos) using a linear fit and their variation 
leading to failure. This is the key information required for the prediction 
of the time of failure using INV (Fukuzono, 1985a) and MIV (Zhou et al., 
2020) methods. Herein, the time of failure refers to the day of occur
rence of the landslide. 

3.3. Prediction of time of failure 

The time of failure estimation involves careful scrutiny and selection 
of candidate MPs which are to be further used in the calculation. We 
have used INV and MIV methods to estimate the time or window of 
failure from candidate MPs. 

4 Sentinel-1 mission information: https://sentinel.esa.int/web/sentinel/miss 
ions/sentinel-1(accessed on 11 March, 2021). 
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3.3.1. Selection of candidate measurement points 
Analysis of the MPs enables identification of at least three different 

types of kinematic behaviours which can be grouped as accelerating, 
linear and stable. The accelerating areas are most important for detec
tion of slope failure as they are directly related to the signatures of slope 
instability. The acceleration or tertiary creep precedes the collapse, from 
which the time of failure can be forecasted (Saito, 1996; Fukuzono, 
1985a; Rose and Hungr, 2007; Mufundirwa et al., 2010; Carlà et al., 
2018). We have analysed the displacement time series curves generated 
from the PSI and SBAS results and have selected such accelerating MPs 
for further analysis. The accelerating MPs are selected from the crown 
and flank of the landslides to adequately represent the overall landslide 
kinematics. To ascertain the quality of the individual MPs, we have 
estimated the “relative precision (r)” where r = (Vp/Vlos). Vp can be 
estimated using Eq. (1) of Kovács et al. (2019). MPs with |r| value less 
than 100 are considered to be reliable and hence are further analysed. 
The displacement time series curves for these MPs clearly demarcate the 
tertiary phase of deformation. 

3.3.2. Inverse velocity method 
The INV is a graphical method described by Fukuzono (1985a). It 

consists of plotting the inverse of velocity against day of observation 
(time). The ratio of displacement by number of days of observation gives 
an estimate of the velocity in mm per day. A reciprocal of the velocity 
value yields the inverse velocity corresponding to a particular time of 
observation. In our case, the first day of observation is the day of 
available first acquisition and the consequent days are then numbered 
accordingly till the date of last acquisition for both the landslide in
stances. This implies that the entire time series of velocity information 
encompasses a total of 492 days for Kikruma and 636 days for Kotropi. 
As long as there is equilibrium, the inverse velocity time plots a line 
which is parallel to time axis. When the instability is triggered, the in
verse velocity decreases asymptotically and the plot display a best fit 
line which on extrapolation intersects the time axis. This day corre
sponds to the day of failure. 

3.3.3. Modified inverse velocity method 
The MIV method was proposed by Zhou et al. (2020) to estimate the 

time of failure using the velocity information derived from the PSI and 
SBAS processing outcomes. The estimated velocity time series is con
verted to inverse velocity time series with respect to the observation 
days (as described in section 3.3.2). We used the mathematical formu
lation of the MIV (Eq. (1)) to deterministically estimate the tf using the 
information derived from the displacement time series graphs of indi
vidual MPs. We estimated the day of onset of acceleration (OOA) from 
the change in trend of the displacement-time graph (Dick et al., 2015). 
This day is marked as t0 and observed as the penultimate change in trend 
of the displacement time series prior to failure. The inverse velocity 
estimated by calculating the reciprocal of the velocity value corre
sponding to t0 is marked as 1/v0. Using these two parameters, the tf is 
estimated as follows: 

1
v
=

1
v0

×

(

1 +
t0 − t
tf − t

)

(1) 

The t0 estimate from the OOA is the demarcated as the penultimate 
change in the trend of displacement time series prior to failure. The 
values of t and corresponding v are taken to be the day of last observa
tion of the time series. 

3.4. Flow modelling 

The final step is to numerically simulate the failure path and run out 
distance. This is essential to identify the possible impact area and also to 
estimate probable damage scenarios. In our study, we have chosen the 2- 
D Voellmy-fluid friction model as implemented in RAMMS (Ayotte and 

Hungr, 2000). The model aims to calculate the motion of the movement 
from initiation to runout in three-dimensional terrain. It uses depth- 
averaged equations and predicts the slope-parallel velocities and flow 
heights. The flow height determines the height of the debris while ve
locity determines the flow movement. 

The main input parameters to be ingested in the flow model are DEM, 
release area and friction information. RAMMS is sensitive to the reso
lution of the DEM. Hence, we have used the high resolution CartoDEM 
(2.5 m) for flow modelling (Martha et al., 2010a, 2010b; Sharma and 
Kartikeyan, 2014). The model takes single or multiple blocks or release 
area (zone of initiation) or input hydrograph (if field observations are 
available) and use two-parameter Voellmy relations to describe the 
frictional behaviour of the flow. Defining an accurate release area for a 
hill slope debris flow is an important aspect of the model as it provides 
useful information about, total volume, flow velocity, flow height and 
total pressure. 

3.4.1. Estimation of the release area 
We have demarcated the release area based on the clustering of ac

celeration of all MPs derived from the PS and SBAS output. The accel
eration of the individual MPs is estimated by subtraction of the velocity 
of the last observation day from the velocity of the penultimate obser
vation day and dividing the same by time. We assume that the cluster of 
high acceleration points defines the general zone of instability on the 
slope face and thus will be the region to fail in the case of a triggering 
event which in this case is heavy rainfall. The PS and SBAS point dataset 
was converted into an acceleration image using the inverse distance 
weighted interpolation method. This image illustrates the variation of 
acceleration within the landslide zone. This image is further segmented 
to low, moderate and high acceleration class and the areas of high ac
celeration above the break-in slope of MP(s) showing OOA were 
considered as the release area during the slope failure. In absence of any 
apriori field information, the entire release area was considered as a 
single block of fixed depth in the RAMMS simulation environment. 

To estimate the release volume, we have a generalised landslide 
volume-area relationship applicable to this terrain and given by Larsen 
et al. (2010) as described in Eq. (2). 

V = 0.186*A1.35 (2) 

Where V is the volume and A is the area of the landslide. 
Once the volume is calculated, it is converted into respective block 

depths by dividing the volume with the RA. These block depths or depths 
of RAs are used for the flow simulation. 

3.4.2. Flow simulation 
Density, coefficients of dry coulomb (μ) and viscous turbulent (ξ) 

frictions are important input parameters to control the overall flow ge
ometry (Ayotte and Hungr, 2000). The density values are adopted from 
the data published by Pradhan et al. (2019) for the Kotropi landslide. In 
both scenarios, the approach of selecting μ and ξ coefficients has been 
kept similar. The μ is considered constant with the value of 0.21 for 
Kikruma (tangent of the average slope, e.g. for Kikruma it is 12◦ at the 
zone of deposition). From the geological interpretations, the rock types 
in the region tend to be granular, therefore with fixed μ, we have iterated 
ξ with values of 100,150 and 200. For the Kotropi landslide, the average 
slope values are 16◦at the zone of deposition for which μ has been 
assigned with a value of 0.29. This constant value of μ is again iterated 
with ξ values of 100, 150 and 200, determining the range for granular 
type debris flow as suggested in the RAMMS debris flow manual. Using 
these parameters, we attempt to model the flow extent which is the best 
representative of the ground condition using Eq. (3) (Salm et al., 1990; 
Salm, 1993). 

S = μN +
(
ρgu2/ξ

)
with N = ρhgcos(φ) (3)  

where ρ is the density, g the gravitational acceleration, φ the slope angle, 
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h the flow height and u the vector u = (ux,uy)T, consisting of the flow 
velocity in the x- and y-directions. The normal stress, N on the running 
surface can be summarised as ρhgcos(φ). The Voellmy model accounts 
for the friction coefficients which are responsible for the behaviour of 
the flow, μ dominates when the flow is close to stopping; ξ dominates 
when the flow is moving fast. Once the flow is simulated, we carried out 
an accuracy estimation of the predicted vs. actual flow using metrices 
such as branching factor (Bf), miss factor (Mf) and detection percentage 
(Shufelt, 1999; Lee et al., 2003; Martha et al., 2012).Branching and miss 
factors indicate two types of potential errors, i.e. false positive and false 
negative areas that may be generated in the simulation process. Detec
tion percentage indicates the landslide area correctly simulated. A 
combination of low Bf and high detection percentage indicates high 
accuracy of the simulation result. 

The entire method is illustrated by the flow chart in Fig. 2. 

4. Results 

4.1. Displacement and velocity estimation from PSI and SBAS 

The PSI algorithm applied to the Sentinel-1 data stack provided 
significant information on the movement of the slope material before the 
landslide occurrence. Though vegetation cover impaired the scene-to- 
scene coherence and limited the number of PS in the landslide region, 
we were able to achieve ~500 PS MPs for Kikruma (Fig. 3a) and ~ 400 
PS MPs for Kotropi (Fig. 3b). Given the overall vegetation cover of the 
slopes, which is much denser in the case of Kikruma, the SBAS pro
cessing for Kikruma did not yield any MPs due to absence of distributed 
scatterers and has resulted in ~140 MPs for Kotropi (Fig. 3c). 

Accurate selection of representative MPs is essential for the accept
able prediction of failure time.The location of the selected accelerating 

MPs from the crown and flanks of the landslides are shown in Fig. 3.It is 
observed that modal values of LOS velocity representing subtle state of 
activity of landslides are generally in the range of 3–5 mm/y. Any ve
locity of more than 5 mm/y generally signifies an active deformation 
phase of the landslide (Crippa et al., 2021). Additionally, Kovács et al. 
(2019) demonstrated that in mountainous and vegetated areas, scat
terers are corrupted by noise if LOS velocity is less than 6-7 mm/yr. 
Therefore, we have analysed the displacement time series of the all the 
MPs with threshold velocities of more than 5 mm/yr demarcating them 
as unstable. As mentioned in section 3.3.1, considering the kinematic 
behaviour, the MPs can be categorised as un-deformed, stable 
displacement and accelerating displacement in the tertiary phase of 
deformation (Fig. 4). MPs with linear displacement show a secondary 
phase of acceleration and have not attained the tertiary phase. Whereas, 
MPs with accelerating displacement, show a continuous increase (linear 
or exponential) in cumulative displacement over time in the tertiary 
phase (Intrieri et al., 2017). We have chosen the MPs which are showing 
accelerating displacement time series for further analysis. It is seen that 
for both the landslides, accelerating MPs are found to exhibit two 
distinct trends. Few MPs show continuous trends of acceleration which 
can be perfectly defined by a quadratic trend line. Others show more 
realistic naturally representative displacement patterns with intermit
tent phases of stability and instability (Fig. 4). We carefully select such 
naturally representative MP for the prediction of the time of failure. 

4.2. Prediction of failure time 

Using the displacement time series of the accelerating MPs, we have 
attempted to estimate the time of failure using the INV and MIV 
methods. As discussed in the previous section, the displacement time 
series is studied for the change in the trend of the curve. For both INV 

Fig. 2. Flowchart of the methodology.  
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and MIV, it is essential to identify the OOA of the slope material (herein 
MPs) prior to failure. This is identified by the break-in slope of the 
displacement time series graph immediately prior to failure. In the case 
of Kikruma, we present two representative MPs from the crown and 
flank of the landslide (MP 1 and MP 2).We identify the OOA to be on 
observation day number 444 (corresponding to 8 June 2018) i.e. 51 days 
prior to failure for the crown and day number 468 (corresponding to 2 
July 2018) i.e. 27 days prior to failure for the flank. Using the INV, the 
trend line of the inverse velocity points from the MP 1 of the landslide 
intersects the time axis on observation day 492 (corresponding to 26 
July 2018) with R2 = 0.57. Similarly, the trend line of the inverse ve
locity points from MP 2 of the landslide intersects the time axis on 
observation day 493 (corresponding to 27 July 2018) with R2 = 0.87. 

On the other hand, for MP1, we implemented the MIV, with to as 444 
and t as 492 (see Eq. (1)) to estimate the time of failure, tf to be on day 

499 (corresponding to 2 August 2018), using the respective inverse 
velocity value (1/vo and 1/v, Fig. 5). Accordingly, for MP 2 on the flank, 
we estimate to as 468 with t as 492 to estimate the time of failure, tf to be 
on day 495 (corresponding to 29 July 2018). 

For the Kotropi landslide, the OOA is identified to be on observation 
day number 624 (corresponding to 31 July 2017) i.e.13 days prior to 
actual failure in the PS and SBAS displacement time series. We 
demonstrate two MPs (MP 3 and MP4) in the crown region estimated 
from PS and SBAS, respectively and one MP (MP 5) at the flank of the 
landslide estimated from SBAS (Fig. 3b). Using the INV, for MP 3, the 
trend line of the inverse velocity points intersects the time axis on 
observation day 637 (corresponding to 13 August 2017). For MP 4 and 
MP 5 this corresponds to day 638 (corresponding to 14 August 2017). 
Using the MIV, considering the OOA to be 31 July 2017, we assume 
observation day 624 as to, using the respective inverse velocity value (1/ 

Fig. 3. a) Distribution of PS points in Kikruma; b) Distribution of PS and SBAS points in Kotropi landslide areas. Location of accelerating MPs (1–5) are annotated.  

Fig. 4. The selection criterion of MPs representing characteristic displacements; 1: Accelerating MP; 2: Stable MP; 3: Un-deformed MP. The segments of the 
displacement curves are classified into: primary (yellow), secondary (green) and tertiary (red) creep stages. (For interpretation of the references to colour in this 
figure legend, the reader is referred to the web version of this article.) 
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vo), using Eq. (1), we estimate the time of failure to be observation day 
638 (which is 14 August 2017, Fig. 6 top panel) for all the three MPs. 
The displacement time series for both the landslides are correlated to the 
rainfall variation during the observation period (Figs. 5 and 6, bottom 
panel). It is worthwhile to mention here that, of all the MPs, only few 
exhibited the tertiary acceleration pattern correlated to rainfall. 

4.3. Prediction of flow path 

We ingested the information, derived from the cluster of accelerating 
MPs into the RAMMS simulation setup, as possible release areas (RA) 
from which the failure may have been initiated. The acceleration values 
were interpolated to create a “material acceleration image” of the 
landslide affected slope (Fig. 7a and b). The acceleration image is then 
classified into zones of high, medium and low acceleration based on 
image segmentation using Histogram-based thresholding with natural 
breaks (Fig. 7c and d).For Kikruma landslide, the threshold between low 
to medium acceleration is 0.024 dm/day2 and that between medium to 
high is 0.39 dm/day2. Similarly for the Kotropi landslide, the threshold 
between low to medium acceleration is 0.30 dm/day2 and that between 
medium to high is 0.69 dm/day2. The classified maps clearly show the 
zones of acceleration and their possible influence areas. For Kotropi, the 
initiation clearly starts from the upslope following a channel and gets 
deposited along the downslope, therefore, the RA has been considered 
from the upslope above MP5 which shows OOA leading to failure 
(Fig. 7e). Similarly, for Kikruma, high acceleration zones in the upslope 
areas above MP2, was considered as release area (Fig. 7f). Demarcation 
of release areas in both cases was guided by break-in slope as 

morphological criteria, which is generally used to map landslide crown 
(Schlögel et al., 2015) (Fig. 7e and f). 

The block depths for the individual RAs were estimated from the 
area-volume relationship as shown in Eq. (2).The finalised block depths 
of RAs for Kotropi and Kikruma landslides were estimated as 7m and 8 
m, respectively. 

The output flow path and the actual landslide boundary are inter
sected to estimate the Bf, Mf and detection percentage; this indicates the 
accuracy of the simulation (Fig. 8 and Table 1).In the case of Kikruma, 
the simulated release volume is ~552,000 m3 with a maximum flow 
velocity of 23.9 m/s and maximum flow height of 32.2 m. For Kotropi, 
the simulated release volume is ~160,000m3 with a maximum flow 
velocity of 21.6 m/s and a maximum flow height of 27.3 m. 

5. Discussion 

We present a methodology for time and path prediction of landslides 
using PSI and SBAS (from Sentinel-1 data) and Voellmy flow model. The 
PSI and SBAS methods are utilised to generate displacement time series 
of the slope material representing individual MPs. Noise reduction and 
PS consistency are achieved using adequately long time series of data 
(Kovács et al., 2019). We have processed a time series Sentinel-1 data 
spanning ~1.5 years for Kikruma and 2 years for Kotropi with more than 
40 scenes in each case. Further, the |r| value of the representative MPs 
range from 5 to 18, which indicates that |r| <<100, thus demonstrating 
their reliability. It is to be noted that, the methodology adopted is not a 
combined PSI-SBAS method but the results from both of the independent 
techniques. The PSI method generated significant MPs distributed over 

Fig. 5. Top panel: Representative displacement time series and inverse velocities for the Kikruma landslide showing the OOA (t0) and last observation point (t).Inset: 
Failure day estimation using INV. Bottom panel: Rainfall variation in the region during the observation period. 
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both the landslide areas. However, the SBAS method resulted in sparse 
clusters of MPs for Kotropi and no MP for Kikruma. The Kotropi land
slide had pre-failure bare rock patches which acted as distributed targets 
in SBAS. However, the relatively high vegetation cover in the case of 
Kikruma prohibited coherent distributed targets even though point 
targets such as isolated open rocks were identified as PS (Chen et al., 
2021). 

The sign conventions of positive and negative displacements are a 
function of satellite and target distance wherein positive and negative 
values indicate decrease and increase in distance, respectively. In 
landslide kinematics, both are possible depending upon topography and 
failure type (refer Fig. 1 of Schlögel et al., 2015). In the present case, our 
representative MPs have negative values, indicating increase in satellite 
and target distance due to mainly a rotational type of failure near the 
crown in tertiary deformation stage. Comparison of the velocities be
tween ascending and descending InSAR measurements of the same 
sensors is a common practice checking the consistency of estimates 
(Aslan et al., 2019). We have carried out the same for the Kotropi 
landslide and it is seen that the velocity distribution is comparable, as 
generally found in steep slopes with active deformation (Supplementary 
material 2). However, similar analysis could not be carried out for 
Kikruma landslide due to unavailability of data in descending pass. 

The trend of the time series is analysed to identify the locations along 
the trend line where the material is accelerating and thus will lead to 
eventual failure during an effective trigger. Further, the pattern of the 
displacement time series also throws light on the kinematics of the 

individual landslides (Petley et al., 2002 and Petley et al., 2005, Dick 
et al., 2015). The pre-failure trends as seen from the cumulative 
displacement plots for both Kikruma and Kotropi landslides, exhibit a 
transitional and rotational type of movement (, Dick et al., 2015). This 
implies periodic intervals of stability followed by an accelerated 
movement induced by a triggering factor, herein rainfall. Petley et al. 
(2005) classified such movements to be “Type 1” primarily associated 
with areas around crown with the movement pattern consisting of slow 
creep with intermittent acceleration induced by rainfall. 

The displacement time series for the Kikruma landslide shows the 
initiation of slope instability from August 2017 which is almost a year 
prior to the actual failure. The OOA was observed on 8 June 2018 for the 
representative MP on the crown and 2 July 2018 on the flank. From 
these, using INV and MIV we have predicted the day of failure to be 26 
July 2018 and 2 August 2018 for the crown, and 27 July 2018 and 29 
July 2018 for the flank, respectively (Table 2). Herein the actual day of 
failure is 29 July 2018. Similarly, using PSI and SBAS methods, for the 
Kotropi landslide, the initiation of instability was recorded during 
August 2016 with the OOA observed on 31 July 2017 for all MPs located 
in the crown and flank. Using PSI (MP 3), the INV and the MIV predicted 
the day of failure as 13 and 14 August 2017, respectively on the crown, 
whereas using SBAS, both INV and MIV predicted the day of failure to be 
14 August 2017 for MP 4 and MP 5 on the crown and flank, respectively 
(Table 2). The actual day of failure is 13 August 2017. 

We attempted to corroborate the displacement pattern and OOA day 
to the physical triggering factor, herein rainfall. This will further 

Fig. 6. Top panel: Displacement time series and inverse velocities for the Kotropi landslide showing the OOA (t0) and last observation point (t).Inset: Failure day 
estimation using INV method. Bottom panel: Rainfall variation in the region during the observation period. 
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substantiate the selection of OOA and robustness of the prediction vis-a- 
vis the displacement time series. The slope destabilization for the Kik
ruma landslide was initiated on 14 September 2017 (observation day 
177). There was a heavy rainfall of approximately 100 mm in and 
around that region on that day which may have triggered the beginning 
of destabilization. The OOA at the crown of the Kikruma landslide was 
identified on 8 June 2018 (observation day 444). Observation from the 
CPC precipitation data shows that although 8 June 2018 recorded scanty 
rainfall, the preceding days of 6 and 7 June 2018 recorded antecedent 
rainfall of ~66 mm thereby triggering the acceleration which was 
recorded on 8 June 2018. However, another spell of high rainfall was 
recorded around 2 July 2018 which may have resulted in OOA on the 
flanks. This observation demonstrates an unsteady acceleration pattern 

controlled by rainfall leading to the landslide failure. For the Kotropi 
landslide, the slope de-stabilization was initiated around 10 September 
2016 (observation day 300). The recorded rainfall for that period is 
~100 mm which may have led to the beginning of destabilization 
(Fig. 6). The OOA was identified on 31 July 2017 (observation day 624). 
The precipitation information reveals that the region experienced a 
considerable amount of rainfall i.e. ~ 62 mm on 31 July 2017 which is 
almost four times the average rainfall of the preceding 10 days (~ 15 
mm). This rainfall event may have triggered the final acceleration 
leading to failure. 

We demonstrated the usability of INV and MIV in failure prediction 
of landslides. We observed that in both cases the INV predicts the failure 
on the day or few days prior to actual failure. This prediction thus acts as 

Fig. 7. Material acceleration map for a. Kikruma and b. Kotropi landslides; Classified acceleration maps for c. Kikruma and d. Kotropi landslides and Release area 
maps for e. Kikruma and f. Kotropi landslides. 
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a safe prediction. The MIV has predicted the failure after the day of 
actual failure therefore categorizing it as an unsafe prediction. Precise 
prediction of the day of failure, using the standalone methods are 
debatable as it does not take into account natural uncertainties and thus 
are unrealistic. We, therefore, recommend the usage of both INV and 
MIV to ascertain a time window of failure (in days) in which the actual 
slope failure may occur. 

In addition to the prediction of failure, we have also modelled the 
probable geometry and flow path of the landslides. We have segmented 
the acceleration image generated from PS and SBAS MPs to identify the 
release area from where the slope material may collapse. This is a new 
method proposed to estimate release area from displacement time series 
derived from InSAR. Using these release areas for both the landslides, we 
have simulated the flow in RAMMS using values of internal and external 
friction. The simulated model showed a good match with the actual 

failure (Table 1). We have broadly benchmarked the outcomes pre
sented by RAMMS with two other probabilistic/empirical and Voellmy 
model based debris flow simulation algorithms i.e. Debris flow predictor 
(Guthrie and Befus, 2021) and R.avaflow (Mergili et al., 2017), 
respectively. The results demonstrated that RAMMS show a good match 
with the actual flow geometry (Supplementary material 3). The mis
matches within the RAMMS simulation outcomes, wherever seen is due 
to the inaccurate representation of the topography by the DEM used 
owing to the constraints of spatial resolution. Minor and local variations 
in topography are not represented accurately by coarse resolution DEM 
but have a control in the overall flow morphology. We verified this by 
performing sensitivity analysis using CartoDEM of 2.5 m, 5 m, 10 m and 
20 m spatial resolution (Supplementary Material 4). Further, the selec
tion of modelling parameters i.e. μ and ξ, and consideration of the 
quantity of precipitation, shows a significant control on the prediction of 

Fig. 8. a-c: Simulated flow height for Kikruma landslide. d-e: Simulated flow height for Kotropi landslide.  

Table 1 
Iterations incorporated in RAMMS with different values of ξ for both the debris flows and respective accuracy estimates.   

Dry-Coulomb (μ) Viscous-Turbulent (ξ) Branching Factor (Bf) Miss factor (Mf) Detection Percentage 

Kikruma 
Iteration 1 

0.21 
100 0.19 0.06 94.1 

Iteration 2 150 0.19 0.07 93.6 
Iteration 3 200 0.20 0.07 93.2 

Kotropi 
Iteration 1 

0.29 
100 0.23 0.26 79.1 

Iteration 2 150 0.22 0.26 79.2 
Iteration 3 200 0.21 0.26 79.4  

Table 2 
Prediction of failure day from INV and MIV.  

Landslide Measurement Point Actual Day of failure PREDICTED DAYS OF FAILURE 

INV MIV 

Kikruma 
MP1 

29 July 2018 
26 July 2018 2 August 2018 

MP2 27 July 2018 29 July 2018 

Kotropi 
MP3 

13 August 2017 
13 August 2017 14 August 2017 

MP4 14 August 2017 14 August 2017 
MP5 14 August 2017 14 August 2017  

P. Roy et al.                                                                                                                                                                                                                                      



Remote Sensing of Environment 271 (2022) 112899

12

outcomes. As mentioned earlier, the failure zone of the Kotropi landslide 
is composed of fine-grained mudstones, as compared to the sandstones 
and quartzites of Kikruma in the eastern Himalayas. Coupled with heavy 
rainfall, the slope material in Kotropi behaved in a much more fluidized 
form in contrast to Kikruma. The accuracy of the prediction results are 
estimated in terms of flow branching factor and high detection per
centage. For Kotropi landslide, the lowest Bf (0.21) and highest detec
tion percentage (79%) is observed when μ is 0.29 and ξ is 200 (Table 1). 
In contrast, for Kikruma, the lowest Bf (0.19) and highest detection 
percentage (94%) is observed with the combination of μ being 0.21 and ξ 
being 100 (Table 1). This shows the granular nature of the debris flow 
with less moisture content since the rainfall impact was lower in this 
region We, therefore recommend careful consideration of slope material 
and amount of precipitation prior to failure in the flow modelling 
exercise. 

It is worthwhile to mention here that the simulation setup is 
currently carried out with apriori knowledge of the landslide. However, 
in a forecast scenario, the identification of RAs from accelerating MPs 
using PSI and SBAS may enable simulation of the failure, with iterative 
and multiple boundary conditions (depths, coefficients etc.).This pre
sents a probabilistic idea about the extent of the failure, it’s possible 
geometry and the damage it may cause to any associated establishments. 

6. Conclusion 

In this work, we present a methodology for prediction of the time and 
path of landslide using analysis of Kikruma and Kotropi landslides as the 
test cases. The slopes on which the failures occurred were analysed using 
the PSI and SBAS approaches with 42 Sentinel-1 SAR images. The 
resultant displacement-time series highlighted the presence of active 
movements on the head scarp region of both the landslides prior to 
failure. The instability has commenced almost a year prior to failure in 
both landslide instances. This is evident from the displacement time 
series derived from the MPs. We used the INV and MIV derived from the 
displacement estimates to forecast the window of failure. The 
deformation-time series and predicted day of failure are in good 
agreement from the different locations in PSI as well as SBAS methods. 
Precise identification of the time of OOA supported by evidence from 
triggering factors (i.e. rainfall) is essential for accurate landslide early 
warning. The cluster and distribution of accelerating MPs provide in
formation about the possible locations of release areas. This information 
can be ingested into the RAMMS environment to model the landslide 
flow using appropriate frictional coefficients to estimate the path of the 
landslide and the extent of failure and damage. Due to the regularity in 
the acquisition of SAR imagery from Sentinel-1 satellites, it is now 
possible to continuously monitor ground deformation in a region. We 
were able to utilise Sentinel-1 data with a 12-day interval for our study 
area. However, the data are available in 6-day repetivity for other re
gions which will further improve identification of OOA. This integrated 
with mathematical methods such as inverse and modified inverse ve
locity methods and numerical simulation such as RAMMS can forecast 
the occurrence and geometry of a landslide in time and space. 
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