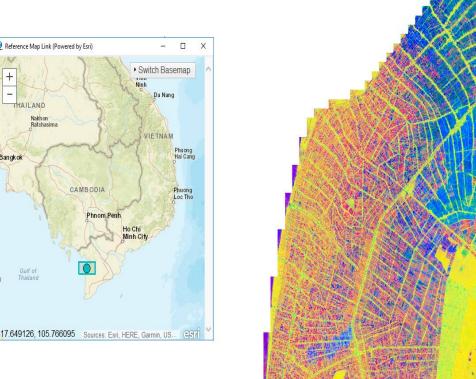


EXPLORING ENVI® SARSCAPE: AGRICULTURE

Megan Gallagher Solutions Engineer

- SAR intensity processes can be used to monitor and track agriculture.
- The ability to see through clouds gives us constant monitoring, and the unique wave responses give us information on the crop growth, soil moisture, and kind of crop
- We will be looking at rice growth in Vietnam, and crop types in Boise, Idaho



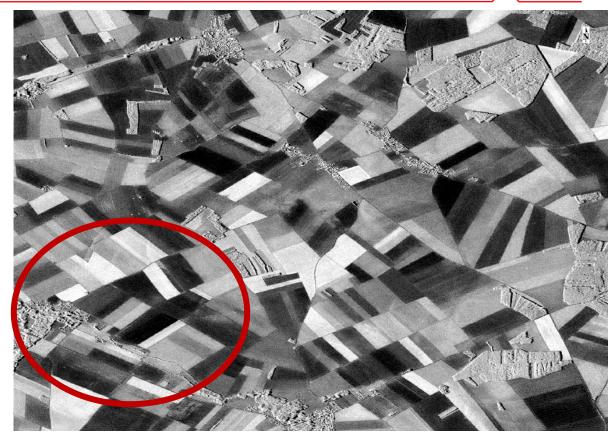
TerraSAR-X Data over Fields

Rice Growth in Vietnam

- Rice is the dominant crop in Vietnam, especially in the Mekong River Delta, where our area of interest lies
- It's growth cycles and stages are not static, meaning it can change from field to field, and year to year.
- Vietnam grows "wet" rice, meaning that fields are flooded instead of dry, which has unique SAR signal responses.

Reference Map Link (Powered by Esri

CAMBODIA


Bangkok

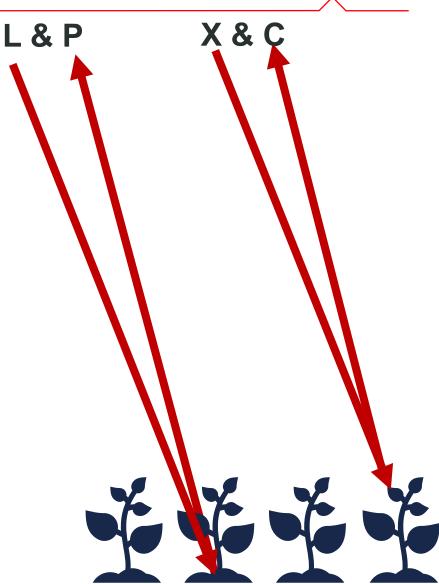
Optical and SAR

Sentinel-2, June 20, 2018

TerraSAR-X, June 18, 2018

Radar Band Frequency

				, Øð
	X BAND	C BAND	L	BAND
		44 44	444	*****
ı, biomass			TT	SIGST.
d penetration	194		444	44444 44444 44444
noisture, n				
ocean	199	444 444	888 8888 8888	44444
ce investigation	DRY SNOW			99999
ce investigation		IAND CI	BAND	L BAND
ver				
ion imagery				
	Austrian pine	X band L band $\lambda = 3 \text{ cm}$ $\lambda = 27 \text{ cm}$		VHF λ>3 m


	Band	Frequency	Applications
	VHF	300 kHz - 300 MHz	Foliage/ground penetration, biomass
	Ρ	300 MHz - 1 GHz	Biomass, soil moisture, ground penetration
	L	1 - 2 GHz	Agriculture/forestry, soil moisture, ground penetration
-	S	3-4 GHZ	Agriculture, biomass, ocean
	С	4 - 8 GHz	Ocean, agriculture, general surface investigation
	Х	8 - 12 GHz	Ocean, agriculture, general surface investigation (high resolution)
-	Ku	14 - 18 GHz	Glacial/ice, snow cover
	Ka	27 - 47 GHz	Glacial/ice, very high resolution imagery

Band Effects

L and P band have longer wavelengths and are dominated by soil backscatter. They are used mainly for soil moisture and information on thicker vegetation.

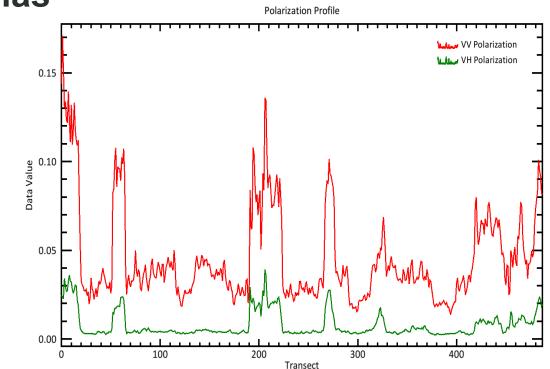
C and X band interact mainly with the canopy. X band works well with broad leafed plants (e.g. Corn and soybeans) while both X and C work well with narrow leafed plants (most grains)

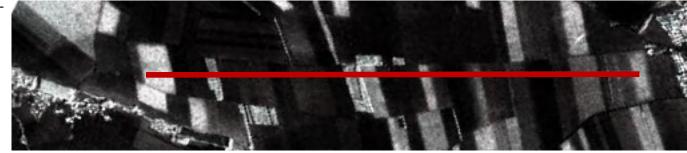
Polarization Choices

SAR satellites have multiple polarizations, from single pole (such as only VV or VH) to quad-pole (which returns all variations)

Each polarization interacts differently with the surface it hits, adding information to the scene

Vertical Wertical Horizontal				
Polarization	Physical Meaning			
VV	Vertical wave, outgoing and incoming			
НН	Horizontal wave, outgoing and incoming			
VH	Vertical Wave outgoing, Horizontal Wave incoming			
HV	Horizontal Wave outgoing, Vertical Wave incoming			

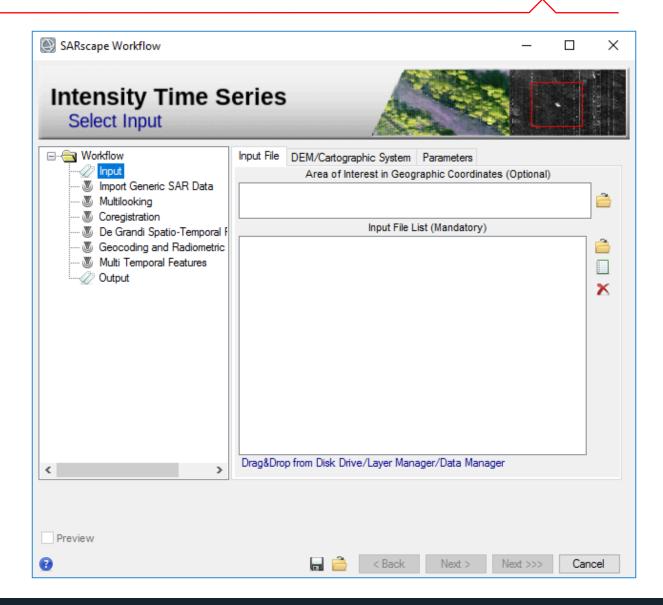

Polarization Effects



Quad Polarized (VV, HH, VH, and HV) has the most information for full understanding of vegetation.

Dual Pol (VV & VH or HH & HV) is still able to discern major differences.

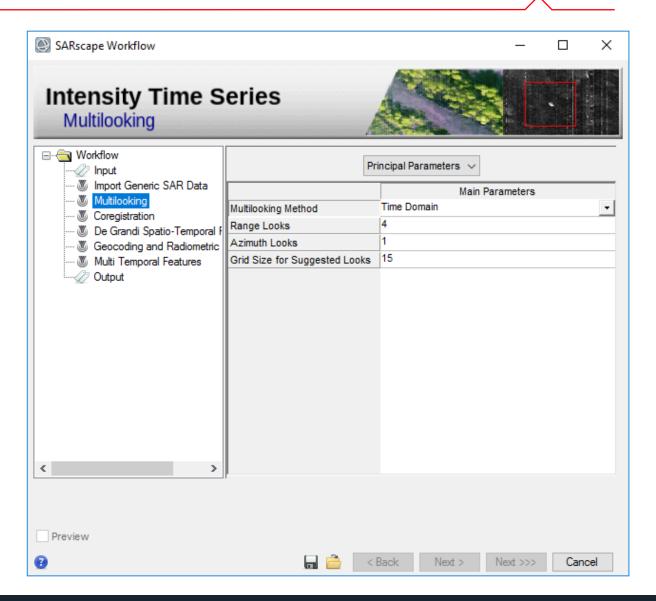
Polarization	Mainly impacted by
НН	Surface Scattering* very small roughness
HV/VH	Volume Scatter
VV	Vegetation Structure



Intensity Time Series

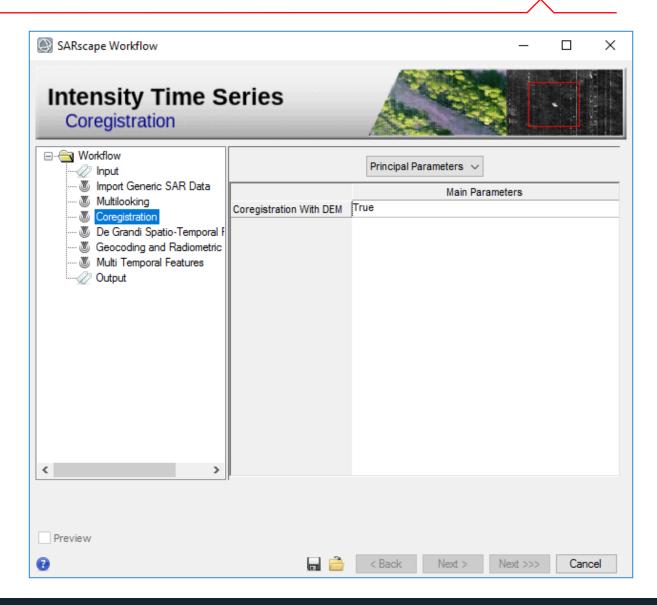
Intensity Time Series (ITS) tracks the changes over time to the imagery reflectance.

11 images are used between June 1st, 2021, to September 29th, 2021


- Input
- Import Generic SAR Data
- Multilooking
- Coregistration
- De Grandi Spatio-Temporal Filtering
- Geocoding and Radiometric Calibration
- Multi Temporal Features
- Output

Intensity Time Series - Multilooking

Multilooking averages over the scene in the azimuth and range directions to create square pixels of specific resolutions. It also helps remove speckle which you can do over time or frequency


- Input
- Import Generic SAR Data
- Multilooking
- Coregistration
- De Grandi Spatio-Temporal Filtering
- Geocoding and Radiometric Calibration
- Multi Temporal Features
- Output

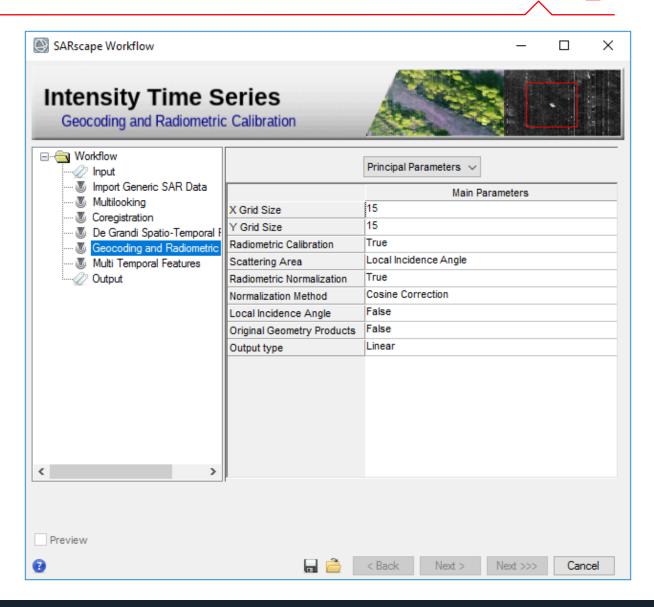
Intensity Time Series - Coregistration

Coregistration aligns the images on top of each other and to the provided DEM for true georeferencing

- Input
- Import Generic SAR Data
- Multilooking
- Coregistration
- De Grandi Spatio-Temporal Filtering
- Geocoding and Radiometric Calibration
- Multi Temporal Features
- Output

Intensity Time Series - Filtering

Filtering helps reduce noise and speckle, De Grandi Spatio-Temporal filtering does this both in the images over space and time, greatly reducing all noise.


- Input
- Import Generic SAR Data
- Multilooking
- Coregistration
- De Grandi Spatio-Temporal Filtering
- Geocoding and Radiometric Calibration
- Multi Temporal Features
- Output

SARscape Workflow			– 🗆 🗙
Intensity Time S De Grandi Spatio-Tempo			
⊡	F	Principal Parameters 🗸	
🖲 Import Generic SAR Data		Main Pa	arameters
Multilooking	Keep incremental	False	
····· 🖏 Coregistration ····· 🖏 De Grandi Spatio-Temporal F	Apply constraints	False	
Geocoding and Radiometric	Minimum Temporal frequency	4	
Multi Temporal Features	Maximum variation (db)	0.5	
Output	Keep Wavelet Thresholded file	s False	
<			
Preview			
0		Back Next >	Next >>> Cancel

Intensity Time Series - Geocoding

Geocoding and Radiometric Calibration place the imagery where it needs to be on the Earth's surface and corrects for any radiometric shifts between images.

- Input
- Import Generic SAR Data
- Multilooking
- Coregistration
- De Grandi Spatio-Temporal Filtering
- Geocoding and Radiometric Calibration
- Multi Temporal Features
- Output

Intensity Time Series – Multi Temporal Features

Multi Temporal Features allows you to choose what statistics you want as outputs for the process. Each statistic will be applied to you stack of data to show total change.

- Input
- Import Generic SAR Data
- Multilooking
- Coregistration
- De Grandi Spatio-Temporal Filtering
- Geocoding and Radiometric Calibration
- Multi Temporal Features
- Output

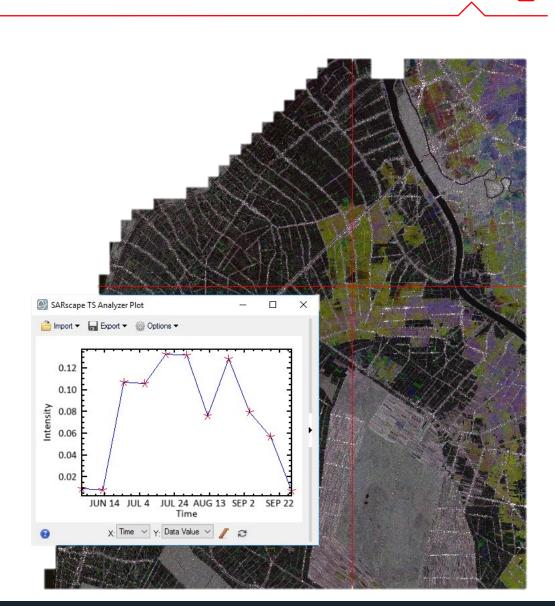
⊡⊖ Workflow 		Principal Parameters V	
Import Generic SAR Data	1	Main Parameters	
	Mean	True	-
Coregistration 😻 De Grandi Spatio-Tempor	al F Std	True	
		False	
Multi Temporal Features	Gradient	True	
	Max	True	
	Min	True	
	Span Difference	False	
	Max Increment	False	
	Max Decrement	False	
	Span Ratio	False	
	Max Ratio	False	
	Min Ratio	False	
	MuSigma	True	
	Coefficient of Variation	True	
	Generate Dates	True	
	Mode	False	~

Standard Intensity Image

A standard intensity image output can be used for looking at changes in a single scene over fields themselves.

If you have in situ information you can look at things such as biomass, and soil moisture.

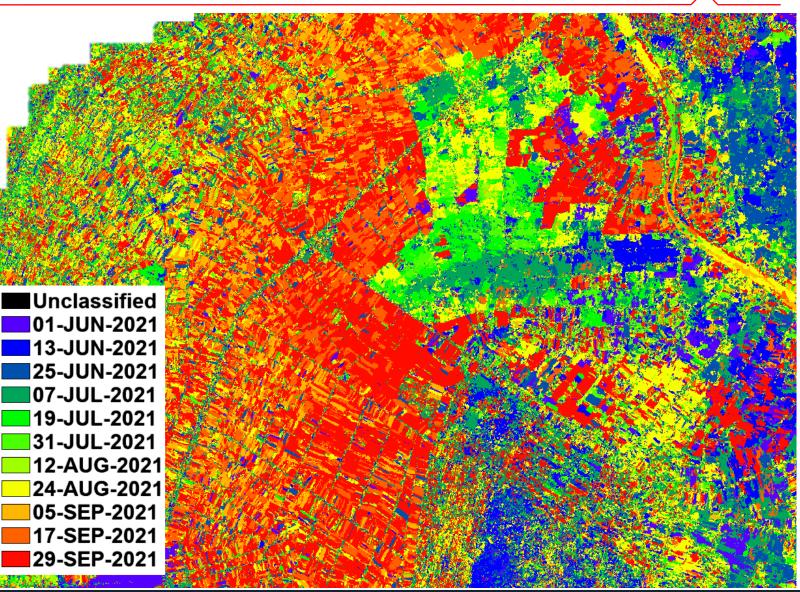
Variation in fields can be seen with higher resolution for monitoring of specific crops



Intensity Change Over Time

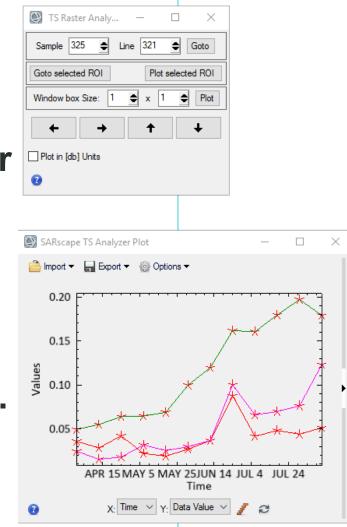
With multiple intensity images, you can track the changes in the growth of the field.

For example, with rice fields flooding begins first, which has a very low reflectance. As the plants grow and sprout the reflectance will increase, with possible changes having to do with moisture and growth stages.



Max Date

The SARscape ITS tool automatically classifies areas by significant statistical features.


For example, we have all the fields classified for their max reflectance data, showing us possible peak growth


Multiple Crop types

If you have multiple fields, you can also use ITS to create signatures of their growth over time.

This can be used to track, or even classify the fields.

Thank you!

JP Metcalf

Solutions Engineer JP.Metcalf@L3harris.com

Solutions Engineer Megan.Gallagher@L3harris.com

Megan Gallagher

L3Harris Geospatial Solutions

L3HarrisGeospatial.com geospatialinfo@L3Harris.com 303-786-9900

www.I3harrisgeospatial.com/Company/Contact-Us