
GPULib: GPU Computing in IDL
(An Update)

Peter Messmer, Paul Mullowney, Mike Galloy, Brian Granger, Dan
Karipides, David Fillmore, Nate Sizemore, Keegan Amyx, Dave

Wade-Stein, Seth Veitzer

Tech-X Corporation
5621 Arapahoe Ave., Boulder, CO 80303

www.txcorp.com

This work is supported by
NASA SBIR Phase-II Grant #NNG06CA13C

IDL User Group Meeting, LASP, Boulder CO, October 16, 2008

Wade-Stein, Seth Veitzer

messmer@txcorp.com

Why IDL on a GPU?

GPUs: Floating-Point Co-Processors

• NVIDIA’s CUDA (Compute Unified Device Architecture)
– Architecture/Programming model no longer focussed on graphics

– 128 processing elements, grouped into 16 SIMD processors (‘multiprocessor’)

– Processors have access to entire memory, but relatively slow (no conv.cache)

– 2 SIMD processors share a common memory (“shared memory”)

– Stream processor: Scalar processor, 2 instr/cycle, branching, etc.

GPUlib: One way to simplify GPU development

• Data objects on GPU represented as structure/object on CPU
– Contains size information, dimensionality and pointer to GPU memory

• GPULib provides a large set of vector operations
– Data transfer GPU/CPU, memory management
– Arithmetic, transcendental, logical functions
– Support for different types (float, double, complex, dcomplex)
– Data parallel primitives, reduction, masking (total, where)
– Array operations (reshaping, interpolation, range selection, type casting)– Array operations (reshaping, interpolation, range selection, type casting)
– NVIDIA’s cuBLAS, cuFFT

• Download technology preview http://gpulib.txcorp.com
(free for non-commercial use)

• Release at SC’08 (Mid November)

A GPULib example in IDL

CPU GPU

X X_gpuIDL> gpuPutArr, x, x_gpu

y y_gpu
IDL> gpuGetArr, y_gpu, y

IDL> gpuSin, x_gpu, y_gpu

Sin()
x_gpu

y_gpu

GPUlib: Some Vector Operations on GPU

• Memory allocation on GPU
y_gpu = gpuFltarr(100, 100)

• Data transfer
gpuPutArr, x, x_gpu

• Binary operators both plain and affine transform
gpuAdd, x_gpu, y_gpu, z_gpu

gpuExp, a, b, x_gpu, c, d, z_gpugpuExp, a, b, x_gpu, c, d, z_gpu

• IDL intrinsics
gpuInterpolate, gpuTotal, gpuCongrid, gpuSubArr,

gpuReform, gpuWhere, gpuRandomu, gpuFltarr, gpuComplex,
gpuMatrix_multiply …

• IDL structure contains all information about GPU object

type, n_elements, n_dimensions, dimensions, handle

Example: Image Deconvolution

• Image is convolved with detector point-spread function:

• Clean image by (complex) division in Fourier space:

dudvvuPvyuxIyxI trueobs ∫ −−=),(),(),(

))(/)((),(
1

PFFTIFFTFFTyxI obstrue

−
=

• Fairly large computational load per CPU-GPU data transfer

• Speedup ranging from 5x – 28x for 256x256 – 3kx3k images

gpuFFT, img, gpu_img_fft

gpuDiv, gpu_img_fft, gpu_psf, gpu_img_fft

gpuFFT, gpu_img_fft, gpu_clean, /INVERSE

gpuGetArr, gpu_clean, clean

GPULib example: Image processing

Principal
Component

Analysis
(PCA)

∆∆∆∆t =3s
Data courtesy of
Dr. Mort Canty,

FZ Juelich, Germany

http://fwenvi-idl.blogspot.com/

GPULib example: Simulation

Neutron scattering experiment

Use simulation written in IDL
to compute location of

Data courtesy of
Dr. Matthias Gutmann,
Rutherford Appleton

Research Lab, UK

to compute location of
scattering maxima

(Bragg peaks)

How to write code for GPULib?

• Develop/debug IDL code

• Optimize IDL code via vectorization
– A well tuned IDL code will benefit most from GPU

• Time it
– Measure, don’t guess
– Use IDL’s profiler

• Successively start moving parts of computation onto GPU
• gpuPutArr, gpuGetArr for debugging

• Redesign parts of the code
– reduce CPU<->GPU data transfer
– increase vector length (> 104 elements)

• Create custom kernels

• => talk to us!

