X

NV5 Geospatial Blog

Each month, NV5 Geospatial posts new blog content across a variety of categories. Browse our latest posts below to learn about important geospatial information or use the search bar to find a specific topic or author. Stay informed of the latest blog posts, events, and technologies by joining our email list!



Not All Supernovae Are Created Equal: Rethinking the Universe’s Measuring Tools

Not All Supernovae Are Created Equal: Rethinking the Universe’s Measuring Tools

6/3/2025

Rethinking the Reliability of Type 1a Supernovae   How do astronomers measure the universe? It all starts with distance. From gauging the size of a galaxy to calculating how fast the universe is expanding, measuring cosmic distances is essential to understanding everything in the sky. For nearby stars, astronomers use... Read More >

Using LLMs To Research Remote Sensing Software: Helpful, but Incomplete

Using LLMs To Research Remote Sensing Software: Helpful, but Incomplete

5/26/2025

Whether you’re new to remote sensing or a seasoned expert, there is no doubt that large language models (LLMs) like OpenAI’s ChatGPT or Google’s Gemini can be incredibly useful in many aspects of research. From exploring the electromagnetic spectrum to creating object detection models using the latest deep learning... Read More >

From Image to Insight: How GEOINT Automation Is Changing the Speed of Decision-Making

From Image to Insight: How GEOINT Automation Is Changing the Speed of Decision-Making

4/28/2025

When every second counts, the ability to process geospatial data rapidly and accurately isn’t just helpful, it’s critical. Geospatial Intelligence (GEOINT) has always played a pivotal role in defense, security, and disaster response. But in high-tempo operations, traditional workflows are no longer fast enough. Analysts are... Read More >

Thermal Infrared Echoes: Illuminating the Last Gasp of a Dying Star

Thermal Infrared Echoes: Illuminating the Last Gasp of a Dying Star

4/24/2025

This blog was written by Eli Dwek, Emeritus, NASA Goddard Space Flight Center, Greenbelt, MD and Research Fellow, Center for Astrophysics, Harvard & Smithsonian, Cambridge, MA. It is the fifth blog in a series showcasing our IDL® Fellows program which supports passionate retired IDL users who may need support to continue their work... Read More >

A New Era of Hyperspectral Imaging with ENVI® and Wyvern’s Open Data Program

A New Era of Hyperspectral Imaging with ENVI® and Wyvern’s Open Data Program

2/25/2025

This blog was written in collaboration with Adam O’Connor from Wyvern.   As hyperspectral imaging (HSI) continues to grow in importance, access to high-quality satellite data is key to unlocking new insights in environmental monitoring, agriculture, forestry, mining, security, energy infrastructure management, and more.... Read More >

1345678910Last
13559 Rate this article:
No rating

Accessing Features Only Available to 32-bit IDL from 64-bit IDL

Jim Pendleton

Not all functionality available to IDL and ENVI in 32-bit mode is available in 64-bit mode, and vice versa.

There are multiple tables in our online documentation that list support for various platforms.

If you're on a 64-bit platform, you have the option of launching IDL in either 32- or 64-bit mode. But that doesn't really solve the problem.

For example, let's say you have a main application that executes in 64-bit IDL, but you want to have access to data in DXF-format files. If you attempt to create an instance of an IDLffDXF object that parses this file format, you'll get an error:

IDL> heart = obj_new('idlffdxf', filepath('heart.dxf', subdir = ['data']))
% OBJ_NEW: Dynamically loadable module is unavailable on this platform: DXF.
% Execution halted at: $MAIN$          

We could fire up a second command line or Workbench session of IDL in 32-bit to parse the file, but a more convenient method, and the way we would want to implement a solution within a compiled routine, is through an IDL_IDLBridge object. There's a special keyword named OPS (technically, "out-of-process server") which allows us to set whether the bridge process should run in 32- or 64-bit mode.

Here, we'll start a 32-bit IDL process from our 64-bit IDL session.

IDL> b = idl_idlbridge(ops = 32)
% Loaded DLM: IDL_IDLBRIDGE.

Obviously, if you're on a 32-bit platform (still?!) you cannot simply create a 64-bit process via the magic of an IDL keyword.

We can construct a command to be executed in our 32-bit process to read the data.

IDL> command = "heart = obj_new('idlffdxf', filepath('heart.dxf', subdir = ['examples','data']))"
IDL> b->execute, command

Now we can proceed with an example from the documentation for the IDLffDXF::GetEntity method's documentation, transferring the data back to our main process for display.

IDL> b->execute,  "heartTypes = heart->getcontents()"
IDL> b->execute, "tissue = heart->getentity(heartTypes[1])"
IDL> b->execute, "connectivity = *tissue.connectivity"
IDL> b->execute, "vertices = *tissue.vertices"
IDL> vertices = b.getvar('vertices')
IDL> connectivity = b.getvar('connectivity')

Now that we have local copies in our 64-bit process of the vertices and connectivity list data from the 32-bit process, we can display the result.

IDL> poly = idlgrpolygon(vertices, poly = connectivity, style = 2, color = !color.red)
IDL> xobjview, poly
Please login or register to post comments.