X

NV5 Geospatial Blog

Each month, NV5 Geospatial posts new blog content across a variety of categories. Browse our latest posts below to learn about important geospatial information or use the search bar to find a specific topic or author. Stay informed of the latest blog posts, events, and technologies by joining our email list!



NV5 at ESA’s Living Planet Symposium 2025

NV5 at ESA’s Living Planet Symposium 2025

9/16/2025

We recently presented three cutting-edge research posters at the ESA Living Planet Symposium 2025 in Vienna, showcasing how NV5 technology and the ENVI® Ecosystem support innovation across ocean monitoring, mineral exploration, and disaster management. Explore each topic below and access the full posters to learn... Read More >

Monitor, Measure & Mitigate: Integrated Solutions for Geohazard Risk

Monitor, Measure & Mitigate: Integrated Solutions for Geohazard Risk

9/8/2025

Geohazards such as slope instability, erosion, settlement, or seepage pose ongoing risks to critical infrastructure. Roads, railways, pipelines, and utility corridors are especially vulnerable to these natural and human-influenced processes, which can evolve silently until sudden failure occurs. Traditional ground surveys provide only periodic... Read More >

Geo Sessions 2025: Geospatial Vision Beyond the Map

Geo Sessions 2025: Geospatial Vision Beyond the Map

8/5/2025

Lidar, SAR, and Spectral: Geospatial Innovation on the Horizon Last year, Geo Sessions brought together over 5,300 registrants from 159 countries, with attendees representing education, government agencies, consulting, and top geospatial companies like Esri, NOAA, Airbus, Planet, and USGS. At this year's Geo Sessions, NV5 is... Read More >

Not All Supernovae Are Created Equal: Rethinking the Universe’s Measuring Tools

Not All Supernovae Are Created Equal: Rethinking the Universe’s Measuring Tools

6/3/2025

Rethinking the Reliability of Type 1a Supernovae   How do astronomers measure the universe? It all starts with distance. From gauging the size of a galaxy to calculating how fast the universe is expanding, measuring cosmic distances is essential to understanding everything in the sky. For nearby stars, astronomers use... Read More >

Using LLMs To Research Remote Sensing Software: Helpful, but Incomplete

Using LLMs To Research Remote Sensing Software: Helpful, but Incomplete

5/26/2025

Whether you’re new to remote sensing or a seasoned expert, there is no doubt that large language models (LLMs) like OpenAI’s ChatGPT or Google’s Gemini can be incredibly useful in many aspects of research. From exploring the electromagnetic spectrum to creating object detection models using the latest deep learning... Read More >

1345678910Last
«September 2025»
SunMonTueWedThuFriSat
31123456
78910111213
14151617181920
21222324252627
2829301234
567891011
17613 Rate this article:
3.0

Celebrating the Upcoming Launch of Global Precipitation Measurement (GPM) Mission

Anonym

Over the last decades, nations around the world have built sophisticated observation systems that can monitor changes to the earth system with high confidence and precision. For example, NASA's EarthObserving System (https://eospso.gsfc.nasa.gov/) is a coordinated series of satellites that monitor long-term global observations of the land surface, biosphere, solid Earth, atmosphere, and oceans, and provides humanity with the baseline observations that permits monitoring of the global climate system.

But as powerful as our observation capability is, there are many unanswered questions related to climate change and the impacts of a warming world across the Earth system. Take for example global precipitation. With a warming global climate, how has global precipitation changed over the last decades? How are local changes in precipitation tied to the larger global climate system? How will precipitation change in the future? How will changes in precipitation affect human society?

To monitor global precipitation, and to help answer these big questions, NASA is working with the Japan Aerospace Exploration Agency (JAXA) to launch a new satellite for monitoring global precipitation, Global Precipitation Measurement (GPM). GPM is an international satellite mission that will provide next-generation observations of rain and snow worldwide every three hours and will be the 'core' observatory for linking precipitation-related observations from a constellation of current and planned satellites to produce next-generation global measurements of rainfall and snowfall from space.

GPM, to be launched on the from the Tanegashima Space Centre, Tanegashima Island, Japan, on February 27, will extend the capability to acquire detailed, near real-time measurements of rain and snowfall on a global scale. One of the most exciting capabilities will be mapping the interior structure of storms in 3 dimensions, extending the capabilities of existing aging satellite systems like Tropical Rainfall Measurement Mission (TRMM).

For example, the TRMM imaging radar has 5 km (3.1 mile) horizontal resolution and 250 meter (820 foot) vertical resolution, which can clearly resolve the structure within storm clouds that contains raindrops and ice large enough to fall as precipitation. The image (above) was acquired by TRMM of Typhoon Bopha as it moved toward Mindanao, the second largest major island in the Philippines, in December of 2012, and reveals details like a double eyewall, two concentric rings of intense storm cells that reach 12 km in altitude. The Dual-frequency Precipitation Radar (DPR) launching with GPM, is expected to be more sensitive than its TRMM predecessor, especially in the measurement of light rainfall and snowfall.

Apart from the impressive capabilities for observing individual precipitation events, a huge benefit from GPM will be in extending the 15-year precipitation record created by TRMM and helping answer some of the big questions around the Earth system and humanity's impact on global climate.

Please login or register to post comments.