X

NV5 Geospatial Blog

Each month, NV5 Geospatial posts new blog content across a variety of categories. Browse our latest posts below to learn about important geospatial information or use the search bar to find a specific topic or author. Stay informed of the latest blog posts, events, and technologies by joining our email list!



12870 Rate this article:
3.0

Minimum Area Bounding Box

Anonym

I find myself drawing bounding boxes around things a lot. I don’t know why I do it so much, but for whatever reason I do, and as of late I wanted to up my bounding box game. In the past, I have simply used the global min and max in both the x and y directions to get the coordinates to form the bounding box; however, this is not always the most elegant solution. For example, when my data follows somewhat of a linear trend, I am left with ample white space not filled by any valuable information.

Figure 1: Simple Bounding Box

Figure 2: Minimum Area Bounding Box

This got me thinking, why am I not simply drawing a bounding box around only the data? Sounds great, right? The only problem was I had no idea how to do this. Luckily, there is this thing called the internet and it has vast stores of information and ideas to pull from. I found a very elegant solution by Jesse Buesking on stackoverflow.com which was posted on November 9, 2015. The solution was written in Python which I converted to IDL. My goal in posting this is to show an awesome way to draw a bounding box and also an example of translating between IDL and Python.


 

function bounding_box, pts = pts, plot_results = plot_results

 compile_opt IDL2

;Get the x and y coordinates

xs = pts[0,*]

ys = pts[1,*]

 

;Find the bounding points

Triangulate, xs, ys, triangles, hull, CONNECTIVITY=CONNECTIVITY


 

;order hull points in a [2,n] array   

 hull_points = [[xs[hull]]##1,[ys[hull]]##1]

;calculate edge angles

edges = hull_points[*,1:-1] - hull_points[*,0:-2]

angles = atan(edges[1,*], edges[0,*])

pi2 = !DPI/2.

 

angles = abs(angles - floor(angles / pi2) * pi2)

angles = angles[sort(angles)]

angles = angles[UNIQ(angles)]


 

;find rotation matrices 

rotations = transpose([[cos(angles)],[cos(angles-pi2)],[cos(angles+pi2)],[cos(angles)]])

rotations = REFORM(rotations, [2,2,n_elements(angles)])

 

;apply rotations to the hull 

rot_points = fltarr( n_elements(hull_points)/2, 2, n_elements(angles))

size_rot = size(rotations)

for group = 0 , size_rot[3]-1 do begin   

for row = 0 , size_rot[2]-1 do begin

rot_points[*,row,group] = TRANSPOSE(rotations[*,row,group]) # hull_points

endfor

endfor

;find the bounding points

min_x min(rot_points[*,0,*],DIMENSION=1, /NAN)

max_x max(rot_points[*,0,*],DIMENSION=1, /NAN)

min_y min(rot_points[*,1,*],DIMENSION=1, /NAN)

max_y max(rot_points[*,1,*],DIMENSION=1, /NAN)

;find the box with the best area

areas = (max_x - min_x) * (max_y - min_y)

min_val = min(areas, best_idx)

;return the best box

x1 = max_x[best_idx]

x2 = min_x[best_idx]

y1 = max_y[best_idx]

y2 = min_y[best_idx]

r = rotations[*,*,best_idx]

rval = fltarr(2,4)

rval[*,0] = TRANSPOSE(TRANSPOSE([x1, y2]) # transpose(r))

rval[*,1] = TRANSPOSE(TRANSPOSE([x2, y2]) # transpose(r))

rval[*,2] = TRANSPOSE(TRANSPOSE([x2, y1]) # transpose(r))

rval[*,3] = TRANSPOSE(TRANSPOSE([x1, y1]) # transpose(r))

 

;display results 

if KEYWORD_SET(plot_results) then begin

p = SCATTERPLOT(xs,ys, SYM_COLOR='Red', SYM_FILL_COLOR='Red', SYM_FILLED=1,$

XRANGE=[min(rval[0,*])-1,max(rval[0,*])+1], YRANGE=[min(rval[1,*])-1,max(rval[1,*])+1])

p = POLYGON(rval, /FILL_BACKGROUND, $

FILL_COLOR="light steel blue", PATTERN_ORIENTATION=45, $

PATTERN_SPACING=4, /DATA)

endif


 

return, rval


 

end

Source of original Python code : http://stackoverflow.com/questions/13542855/python-help-to-implement-an-algorithm-to-find-the-minimum-area-rectangle-for-gi/33619018#33619018 

Please login or register to post comments.
«May 2025»
SunMonTueWedThuFriSat
27282930123
45678910
11121314151617
18192021222324
25262728293031
1234567
Digital Number, Radiance, and...

Number of views (168874)

Push Broom and Whisk Broom Sensors

Number of views (149961)

The Many Band Combinations of Landsat 8

Number of views (118078)

What Type of Loop Should I Use?

Number of views (78321)

Mapping Coastal Erosion Using LiDAR

Number of views (58308)