Aguilar, R., R. Zurita-Milla, E. Izquierdo-Verdiguier, and R. A. de By. “A Cloud-Based Multi-Temporal Ensemble Classifier to Map Smallholder Farming Systems.” Remote Sensing 10, No. 729 (2018).
Bah, M. D., A. Hafiane, and R. Canals. “Deep Learning with Unsupervised Data Labeling for Weed Detection in Line Crops in UAV Images.” Remote Sensing 10, No. 11 (2018).
Castro, J. B., R. Q. Feitosa, L. C. La Rosa, P. A. Diaz, and I. Sanches. “A Comparative Analysis of Deep Learning Techniques for Sub-tropical Crop Types Recognition from Multitemporal Optical/SAR Image Sequences.” Proceedings of the 30th SIBGRAPI Conference on Graphics, Patterns, and Images (2017): 382-389.
Dyrmann, M., A. K. Mortensen, H. S. Midtiby, and R. N. Jørgensen. “Pixel-wise Classification of Weeds and Crop in Images by Using a Fully Convolutional Neural Network.” Proceedings of the CIGR-AgEng Conference (2016).
Ferreira, A., S. Felipussi, R. Pires, S. Avila, G. Santos, J. Lambert, J. Huang, and A. Rocha. “Eyes in the Skies: A Data-Driven Fusion Approach to Identifying Drug Crops from Remote Sensing Images.” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing (2019), in press.
Huang, H., J. Deng, Y. Lan, A. Yan, X. Deng, and L. Zhang. “A Fully Convolutional Network for Weed Mapping of Unmanned Aerial Vehicle (UAV) Imagery.” PloS ONE 13, No. 4 (2018): 1-19.
Kamilaris, A., and F. Prenafeta-Boldú. “A Review of the Use of Convolutional Neural Networks in Agriculture.” The Journal of Agricultural Science (2018): 1-11.
Kussul, N., M. Lavreniuk, S. Skakun, and A. Shelestov. “Deep Learning Classification of Land Cover and Crop Types Using Remote Sensing Data.” IEEE Geoscience and Remote Sensing Letters 14, No. 5 (2017): 778-782.
Ma, L., Y. Liu, X. Zhang, Y. Ye, G. Yin, and B. Johnson. “Deep Learning in Remote Sensing Applications: A Meta-analysis and Review.” ISPRS Journal of Photogrammetry and Remote Sensing 152 (2019): 166-177.
Mahdianpari, M., B. Salehi, M. Rezaee, F. Mohammadimanesh, and Y. Zhang. “Very Deep Convolutional Neural Networks for Complex Land Cover Mapping Using Multispectral Remote Sensing Imagery.” Remote Sensing 10, No. 7 (2018).
Ndikumana, E., D. H. T. Minh, N. Baghdadi, D. Courault, and L. Hossard. “Deep Recurrent Neural Network for Agricultural Classification Using Multitemporal SAR Sentinel-1 for Camargue, France.” Remote Sensing 10, No. 8 (2018).
Nyambo, D., E. Luhanga, and Z. Yonah. “A Review of Characterization Approaches for Smallholder Farmers: Towards Predictive Farm Typologies.” Hindawi: The Scientific World Journal, Article ID 6121467 (2019).
Oghaz, M. M., M. Razaak, H. Kerdegari, V. Argyriou, and P. Remagnino. “Scene and Environment Monitoring Using Aerial Imagery and Deep Learning.” Proceedings of the 15th International Conference on Distributed Computing in Sensor Systems (2019).
Olsen, A., et al. “DeepWeeds: A Multiclass Weed Species Image Dataset for Deep Learning.” Scientific Reports 9, No. 2058 (2019): 1-12.
Peña-Barragán, J., M. Ngugi, R. Plant, and J. Six. “Object-based Crop Identification Using Multiple Vegetation Indices, Textural Features and Crop Phenology.” Remote Sensing of Environment 115 (2011).
Persello, C., V. Tolpekin, J. Bergado, and R. de By. “Delineation of Agricultural Fields in Smallholder Farms from Satellite Images Using Fully Convolutional Networks and Combinatorial Grouping.” Remote Sensing of Environment 231 (2019): 111253.
Sa, I., M. Popivić, K. Raghav, Z. Chen, P. Lottes, F. Liebisch, J. Nieto, C. Stachniss, A. Walter, and R. Siegwart. “WeedMap: A Large-Scale Semantic Weed Mapping Framework Using Aerial Multispectral Imaging and Deep Neural Network for Precision Farming.” Remote Sensing 10, No. 9 (2018).
Wolfe, J. “Using ENVI for Agricultural Research. Case Study: Optical Remote Sensing of Sugarcane Development.” NV5 Geospatial Solutions (2017). Available at here.