X

NV5 Geospatial Blog

Each month, NV5 Geospatial posts new blog content across a variety of categories. Browse our latest posts below to learn about important geospatial information or use the search bar to find a specific topic or author. Stay informed of the latest blog posts, events, and technologies by joining our email list!



NV5 at ESA’s Living Planet Symposium 2025

NV5 at ESA’s Living Planet Symposium 2025

9/16/2025

We recently presented three cutting-edge research posters at the ESA Living Planet Symposium 2025 in Vienna, showcasing how NV5 technology and the ENVI® Ecosystem support innovation across ocean monitoring, mineral exploration, and disaster management. Explore each topic below and access the full posters to learn... Read More >

Monitor, Measure & Mitigate: Integrated Solutions for Geohazard Risk

Monitor, Measure & Mitigate: Integrated Solutions for Geohazard Risk

9/8/2025

Geohazards such as slope instability, erosion, settlement, or seepage pose ongoing risks to critical infrastructure. Roads, railways, pipelines, and utility corridors are especially vulnerable to these natural and human-influenced processes, which can evolve silently until sudden failure occurs. Traditional ground surveys provide only periodic... Read More >

Geo Sessions 2025: Geospatial Vision Beyond the Map

Geo Sessions 2025: Geospatial Vision Beyond the Map

8/5/2025

Lidar, SAR, and Spectral: Geospatial Innovation on the Horizon Last year, Geo Sessions brought together over 5,300 registrants from 159 countries, with attendees representing education, government agencies, consulting, and top geospatial companies like Esri, NOAA, Airbus, Planet, and USGS. At this year's Geo Sessions, NV5 is... Read More >

Not All Supernovae Are Created Equal: Rethinking the Universe’s Measuring Tools

Not All Supernovae Are Created Equal: Rethinking the Universe’s Measuring Tools

6/3/2025

Rethinking the Reliability of Type 1a Supernovae   How do astronomers measure the universe? It all starts with distance. From gauging the size of a galaxy to calculating how fast the universe is expanding, measuring cosmic distances is essential to understanding everything in the sky. For nearby stars, astronomers use... Read More >

Using LLMs To Research Remote Sensing Software: Helpful, but Incomplete

Using LLMs To Research Remote Sensing Software: Helpful, but Incomplete

5/26/2025

Whether you’re new to remote sensing or a seasoned expert, there is no doubt that large language models (LLMs) like OpenAI’s ChatGPT or Google’s Gemini can be incredibly useful in many aspects of research. From exploring the electromagnetic spectrum to creating object detection models using the latest deep learning... Read More >

1345678910Last
«September 2025»
SunMonTueWedThuFriSat
31123456
78910111213
14151617181920
21222324252627
2829301234
567891011
15117 Rate this article:
No rating

An efficient implementation of 2-D classification to a convex hull reference

Anonym

A supervised classification technique consists of having a set of known reference samples defining a class, and comparing another set of unknown samples to the reference samples to determine which are similar enough to belong to the known class. One possible approach is to test the unknown samples for containment in the convex hull of the reference samples, and samples that are contained in the convex hull are said to belong to the class. This approach can be used in a sample space of any number of dimensions. Here is an example implementation for a 2-D sampling space.

; An efficient algorithm for finding2-D points within

; the convex hull of a set ofreference points.

; This approach can be used forclassifying new point samples

; against a set of knownrepresentative reference points.

; The code is optimized to run fastin the case where nPts

; gets very large (provided that thePLOT calls are removed

; first).

pro PointOverlap

 compile_opt idl2,logical_predicate

 ;reference points

 nRef = 300

 xRef = randomn(seed, nRef) * 20 + 40

 yRef = randomn(seed, nRef) * 55 + 25

 

 p = list()

 p->Add, plot(xRef, yRef, 'r+')

 

 ;points to be tested

 nPts = 800

 x = randomn(seed, nPts) * 50 + 50

 y = randomn(seed, nPts) * 50 + 50

 

 ;find the extent of the refernce points using the convex hull

 qhull, xRef, yRef, lines

 

 ;test each of the other points for containment in the convex hull

 intern = bytarr(nPts)

 for i=0, n_elements(lines)/2-1 do begin

   seg = lines[*,i]

   a = yRef[seg[0]] - y

   b = yRef[seg[1]] gt y

   w0 = a/(yRef[seg[0]] - yRef[seg[1]])

   xval = xRef[seg[0]]*(1.0-w0) + xRef[seg[1]]*w0

   ;points are contained when there is an odd number of crossings

   intern xor= ((a gt 0) xor b) and (xval gt x)

 endfor

 

 w = where(intern, complement=v)

 p->Add, plot(x[w], y[w], 'go', /over)

 p->Add, plot(x[v], y[v], 'bX', /over)

 for i=0, n_elements(lines)/2-1 do begin

   seg = lines[*,i]

   p->Add, plot(xRef[seg], yRef[seg], 'r', /over)

 endfor

end

 

Please login or register to post comments.