X

NV5 Geospatial Blog

Each month, NV5 Geospatial posts new blog content across a variety of categories. Browse our latest posts below to learn about important geospatial information or use the search bar to find a specific topic or author. Stay informed of the latest blog posts, events, and technologies by joining our email list!



Mapping Earthquake Deformation in Taiwan With ENVI

Mapping Earthquake Deformation in Taiwan With ENVI

12/15/2025

Unlocking Critical Insights With ENVI® Tools Taiwan sits at the junction of major tectonic plates and regularly experiences powerful earthquakes. Understanding how the ground moves during these events is essential for disaster preparedness, public safety, and building community resilience. But traditional approaches like field... Read More >

Comparing Amplitude and Coherence Time Series With ICEYE US GTR Data and ENVI SARscape

Comparing Amplitude and Coherence Time Series With ICEYE US GTR Data and ENVI SARscape

12/3/2025

Large commercial SAR satellite constellations have opened a new era for persistent Earth monitoring, giving analysts the ability to move beyond simple two-image comparisons into robust time series analysis. By acquiring SAR data with near-identical geometry every 24 hours, Ground Track Repeat (GTR) missions minimize geometric decorrelation,... Read More >

Empowering D&I Analysts to Maximize the Value of SAR

Empowering D&I Analysts to Maximize the Value of SAR

12/1/2025

Defense and intelligence (D&I) analysts rely on high-resolution imagery with frequent revisit times to effectively monitor operational areas. While optical imagery is valuable, it faces limitations from cloud cover, smoke, and in some cases, infrequent revisit times. These challenges can hinder timely and accurate data collection and... Read More >

Easily Share Workflows With the Analytics Repository

Easily Share Workflows With the Analytics Repository

10/27/2025

With the recent release of ENVI® 6.2 and the Analytics Repository, it’s now easier than ever to create and share image processing workflows across your organization. With that in mind, we wrote this blog to: Introduce the Analytics Repository Describe how you can use ENVI’s interactive workflows to... Read More >

Deploy, Share, Repeat: AI Meets the Analytics Repository

Deploy, Share, Repeat: AI Meets the Analytics Repository

10/13/2025

The upcoming release of ENVI® Deep Learning 4.0 makes it easier than ever to import, deploy, and share AI models, including industry-standard ONNX models, using the integrated Analytics Repository. Whether you're building deep learning models in PyTorch, TensorFlow, or using ENVI’s native model creation tools, ENVI... Read More >

1345678910Last
17592 Rate this article:
No rating

An efficient implementation of 2-D classification to a convex hull reference

Anonym

A supervised classification technique consists of having a set of known reference samples defining a class, and comparing another set of unknown samples to the reference samples to determine which are similar enough to belong to the known class. One possible approach is to test the unknown samples for containment in the convex hull of the reference samples, and samples that are contained in the convex hull are said to belong to the class. This approach can be used in a sample space of any number of dimensions. Here is an example implementation for a 2-D sampling space.

; An efficient algorithm for finding2-D points within

; the convex hull of a set ofreference points.

; This approach can be used forclassifying new point samples

; against a set of knownrepresentative reference points.

; The code is optimized to run fastin the case where nPts

; gets very large (provided that thePLOT calls are removed

; first).

pro PointOverlap

 compile_opt idl2,logical_predicate

 ;reference points

 nRef = 300

 xRef = randomn(seed, nRef) * 20 + 40

 yRef = randomn(seed, nRef) * 55 + 25

 

 p = list()

 p->Add, plot(xRef, yRef, 'r+')

 

 ;points to be tested

 nPts = 800

 x = randomn(seed, nPts) * 50 + 50

 y = randomn(seed, nPts) * 50 + 50

 

 ;find the extent of the refernce points using the convex hull

 qhull, xRef, yRef, lines

 

 ;test each of the other points for containment in the convex hull

 intern = bytarr(nPts)

 for i=0, n_elements(lines)/2-1 do begin

   seg = lines[*,i]

   a = yRef[seg[0]] - y

   b = yRef[seg[1]] gt y

   w0 = a/(yRef[seg[0]] - yRef[seg[1]])

   xval = xRef[seg[0]]*(1.0-w0) + xRef[seg[1]]*w0

   ;points are contained when there is an odd number of crossings

   intern xor= ((a gt 0) xor b) and (xval gt x)

 endfor

 

 w = where(intern, complement=v)

 p->Add, plot(x[w], y[w], 'go', /over)

 p->Add, plot(x[v], y[v], 'bX', /over)

 for i=0, n_elements(lines)/2-1 do begin

   seg = lines[*,i]

   p->Add, plot(xRef[seg], yRef[seg], 'r', /over)

 endfor

end

 

Please login or register to post comments.