X

NV5 Geospatial Blog

Each month, NV5 Geospatial posts new blog content across a variety of categories. Browse our latest posts below to learn about important geospatial information or use the search bar to find a specific topic or author. Stay informed of the latest blog posts, events, and technologies by joining our email list!



Not All Supernovae Are Created Equal: Rethinking the Universe’s Measuring Tools

Not All Supernovae Are Created Equal: Rethinking the Universe’s Measuring Tools

6/3/2025

Rethinking the Reliability of Type 1a Supernovae   How do astronomers measure the universe? It all starts with distance. From gauging the size of a galaxy to calculating how fast the universe is expanding, measuring cosmic distances is essential to understanding everything in the sky. For nearby stars, astronomers use... Read More >

Using LLMs To Research Remote Sensing Software: Helpful, but Incomplete

Using LLMs To Research Remote Sensing Software: Helpful, but Incomplete

5/26/2025

Whether you’re new to remote sensing or a seasoned expert, there is no doubt that large language models (LLMs) like OpenAI’s ChatGPT or Google’s Gemini can be incredibly useful in many aspects of research. From exploring the electromagnetic spectrum to creating object detection models using the latest deep learning... Read More >

From Image to Insight: How GEOINT Automation Is Changing the Speed of Decision-Making

From Image to Insight: How GEOINT Automation Is Changing the Speed of Decision-Making

4/28/2025

When every second counts, the ability to process geospatial data rapidly and accurately isn’t just helpful, it’s critical. Geospatial Intelligence (GEOINT) has always played a pivotal role in defense, security, and disaster response. But in high-tempo operations, traditional workflows are no longer fast enough. Analysts are... Read More >

Thermal Infrared Echoes: Illuminating the Last Gasp of a Dying Star

Thermal Infrared Echoes: Illuminating the Last Gasp of a Dying Star

4/24/2025

This blog was written by Eli Dwek, Emeritus, NASA Goddard Space Flight Center, Greenbelt, MD and Research Fellow, Center for Astrophysics, Harvard & Smithsonian, Cambridge, MA. It is the fifth blog in a series showcasing our IDL® Fellows program which supports passionate retired IDL users who may need support to continue their work... Read More >

A New Era of Hyperspectral Imaging with ENVI® and Wyvern’s Open Data Program

A New Era of Hyperspectral Imaging with ENVI® and Wyvern’s Open Data Program

2/25/2025

This blog was written in collaboration with Adam O’Connor from Wyvern.   As hyperspectral imaging (HSI) continues to grow in importance, access to high-quality satellite data is key to unlocking new insights in environmental monitoring, agriculture, forestry, mining, security, energy infrastructure management, and more.... Read More >

1345678910Last
14105 Rate this article:
No rating

An efficient implementation of 2-D classification to a convex hull reference

Anonym

A supervised classification technique consists of having a set of known reference samples defining a class, and comparing another set of unknown samples to the reference samples to determine which are similar enough to belong to the known class. One possible approach is to test the unknown samples for containment in the convex hull of the reference samples, and samples that are contained in the convex hull are said to belong to the class. This approach can be used in a sample space of any number of dimensions. Here is an example implementation for a 2-D sampling space.

; An efficient algorithm for finding2-D points within

; the convex hull of a set ofreference points.

; This approach can be used forclassifying new point samples

; against a set of knownrepresentative reference points.

; The code is optimized to run fastin the case where nPts

; gets very large (provided that thePLOT calls are removed

; first).

pro PointOverlap

 compile_opt idl2,logical_predicate

 ;reference points

 nRef = 300

 xRef = randomn(seed, nRef) * 20 + 40

 yRef = randomn(seed, nRef) * 55 + 25

 

 p = list()

 p->Add, plot(xRef, yRef, 'r+')

 

 ;points to be tested

 nPts = 800

 x = randomn(seed, nPts) * 50 + 50

 y = randomn(seed, nPts) * 50 + 50

 

 ;find the extent of the refernce points using the convex hull

 qhull, xRef, yRef, lines

 

 ;test each of the other points for containment in the convex hull

 intern = bytarr(nPts)

 for i=0, n_elements(lines)/2-1 do begin

   seg = lines[*,i]

   a = yRef[seg[0]] - y

   b = yRef[seg[1]] gt y

   w0 = a/(yRef[seg[0]] - yRef[seg[1]])

   xval = xRef[seg[0]]*(1.0-w0) + xRef[seg[1]]*w0

   ;points are contained when there is an odd number of crossings

   intern xor= ((a gt 0) xor b) and (xval gt x)

 endfor

 

 w = where(intern, complement=v)

 p->Add, plot(x[w], y[w], 'go', /over)

 p->Add, plot(x[v], y[v], 'bX', /over)

 for i=0, n_elements(lines)/2-1 do begin

   seg = lines[*,i]

   p->Add, plot(xRef[seg], yRef[seg], 'r', /over)

 endfor

end

 

Please login or register to post comments.