X

NV5 Geospatial Blog

Each month, NV5 Geospatial posts new blog content across a variety of categories. Browse our latest posts below to learn about important geospatial information or use the search bar to find a specific topic or author. Stay informed of the latest blog posts, events, and technologies by joining our email list!



13711 Rate this article:
No rating

An efficient implementation of 2-D classification to a convex hull reference

Anonym

A supervised classification technique consists of having a set of known reference samples defining a class, and comparing another set of unknown samples to the reference samples to determine which are similar enough to belong to the known class. One possible approach is to test the unknown samples for containment in the convex hull of the reference samples, and samples that are contained in the convex hull are said to belong to the class. This approach can be used in a sample space of any number of dimensions. Here is an example implementation for a 2-D sampling space.

; An efficient algorithm for finding2-D points within

; the convex hull of a set ofreference points.

; This approach can be used forclassifying new point samples

; against a set of knownrepresentative reference points.

; The code is optimized to run fastin the case where nPts

; gets very large (provided that thePLOT calls are removed

; first).

pro PointOverlap

 compile_opt idl2,logical_predicate

 ;reference points

 nRef = 300

 xRef = randomn(seed, nRef) * 20 + 40

 yRef = randomn(seed, nRef) * 55 + 25

 

 p = list()

 p->Add, plot(xRef, yRef, 'r+')

 

 ;points to be tested

 nPts = 800

 x = randomn(seed, nPts) * 50 + 50

 y = randomn(seed, nPts) * 50 + 50

 

 ;find the extent of the refernce points using the convex hull

 qhull, xRef, yRef, lines

 

 ;test each of the other points for containment in the convex hull

 intern = bytarr(nPts)

 for i=0, n_elements(lines)/2-1 do begin

   seg = lines[*,i]

   a = yRef[seg[0]] - y

   b = yRef[seg[1]] gt y

   w0 = a/(yRef[seg[0]] - yRef[seg[1]])

   xval = xRef[seg[0]]*(1.0-w0) + xRef[seg[1]]*w0

   ;points are contained when there is an odd number of crossings

   intern xor= ((a gt 0) xor b) and (xval gt x)

 endfor

 

 w = where(intern, complement=v)

 p->Add, plot(x[w], y[w], 'go', /over)

 p->Add, plot(x[v], y[v], 'bX', /over)

 for i=0, n_elements(lines)/2-1 do begin

   seg = lines[*,i]

   p->Add, plot(xRef[seg], yRef[seg], 'r', /over)

 endfor

end

 

Please login or register to post comments.
«May 2025»
SunMonTueWedThuFriSat
27282930123
45678910
11121314151617
18192021222324
25262728293031
1234567
Digital Number, Radiance, and...

Number of views (169543)

Push Broom and Whisk Broom Sensors

Number of views (150805)

The Many Band Combinations of Landsat 8

Number of views (118725)

What Type of Loop Should I Use?

Number of views (78689)

Mapping Coastal Erosion Using LiDAR

Number of views (58475)