X

NV5 Geospatial Blog

Each month, NV5 Geospatial posts new blog content across a variety of categories. Browse our latest posts below to learn about important geospatial information or use the search bar to find a specific topic or author. Stay informed of the latest blog posts, events, and technologies by joining our email list!



Easily Share Workflows With the Analytics Repository

Easily Share Workflows With the Analytics Repository

10/27/2025

With the recent release of ENVI® 6.2 and the Analytics Repository, it’s now easier than ever to create and share image processing workflows across your organization. With that in mind, we wrote this blog to: Introduce the Analytics Repository Describe how you can use ENVI’s interactive workflows to... Read More >

Deploy, Share, Repeat: AI Meets the Analytics Repository

Deploy, Share, Repeat: AI Meets the Analytics Repository

10/13/2025

The upcoming release of ENVI® Deep Learning 4.0 makes it easier than ever to import, deploy, and share AI models, including industry-standard ONNX models, using the integrated Analytics Repository. Whether you're building deep learning models in PyTorch, TensorFlow, or using ENVI’s native model creation tools, ENVI... Read More >

Blazing a trail: SaraniaSat-led Team Shapes the Future of Space-Based Analytics

Blazing a trail: SaraniaSat-led Team Shapes the Future of Space-Based Analytics

10/13/2025

On July 24, 2025, a unique international partnership of SaraniaSat, NV5 Geospatial Software, BruhnBruhn Innovation (BBI), Netnod, and Hewlett Packard Enterprise (HPE) achieved something unprecedented: a true demonstration of cloud-native computing onboard the International Space Station (ISS) (Fig. 1). Figure 1. Hewlett... Read More >

NV5 at ESA’s Living Planet Symposium 2025

NV5 at ESA’s Living Planet Symposium 2025

9/16/2025

We recently presented three cutting-edge research posters at the ESA Living Planet Symposium 2025 in Vienna, showcasing how NV5 technology and the ENVI® Ecosystem support innovation across ocean monitoring, mineral exploration, and disaster management. Explore each topic below and access the full posters to learn... Read More >

Monitor, Measure & Mitigate: Integrated Solutions for Geohazard Risk

Monitor, Measure & Mitigate: Integrated Solutions for Geohazard Risk

9/8/2025

Geohazards such as slope instability, erosion, settlement, or seepage pose ongoing risks to critical infrastructure. Roads, railways, pipelines, and utility corridors are especially vulnerable to these natural and human-influenced processes, which can evolve silently until sudden failure occurs. Traditional ground surveys provide only periodic... Read More >

1345678910Last
«November 2025»
SunMonTueWedThuFriSat
2627282930311
2345678
9101112131415
16171819202122
23242526272829
30123456
23768 Rate this article:
4.0

Beyond NDVI

Anonym

Precision Agriculture is a cutting edge topic in the remote sensing world. With several new sensors and platforms generating higher spatial and spectral resolution data, more and more growers are compelled to delve into the remote sensing realm. Generating whole-field metrics rather than extrapolating sparse ground measurements to a large area is one of the ways these growers are able to achieve better yield predictions and attain actionable information during the growing season to maximize efficiency.

One great way to generate whole field metrics is to calculate a vegetation index (Vi) to extract information about an area of interest (AOI). For example, perhaps you want to calculate the overall vegetation health within a field. Probably the most popular way to achieve this is to calculate a normalized difference vegetation index (NDVI). This index is widely accepted as a standard to determine vegetation health. Bright areas indicate healthy vegetation and darker areas are unhealthy vegetation or bare or impervious surfaces.

But NDVI is certainly not the only index out there. Many other indices lend insight into field health by utilizing spectral information in such a way that soil effects can be minimized, subtle changes within a crop can be detected, and even yield estimates can be fine-tuned. Here are just afew examples of some of the spectral indices that are useful tools for precision agriculture applications.

DVI: Difference Vegetation Index

DVI = NIR - Red

DVI is useful to differentiate between soil and vegetation. When considering a precision agriculture application and the very high spatial resolution images that are sometimes available for this analysis, it is important to mask or remove bare soil prior to running a vegetation health index so that the index does not over saturate and become difficult to interpret. The DVI does a great job separating bare soil from planted crops.

QuickBird image courtesy of Digital Globe. Data processed to reflectance then (left) calculated single field NDVI with yellow to green color ramp applied to indicate vegetation health and (right) calculated DVI and threshold to separate bare soil (blue) from vegetation (green)

GVI: Green Vegetation Index (Tasseled Cap)

GVI = (-.2848*TM1) + (-.2435 * TM2) +(-.5436*TM3) +(.7243*TM4)+(.0840*TM5)+(-.1800*TM7)

The Tasseled Cap, or Green Vegetation Index, is a great way to not only minimize the effects of background soil, but also to simultaneously emphasizing the reflective characteristics of green vegetation. While this index was originally developed for use with Landsat TM, it also works with the corresponding wavelengths found in Landsat ETM+ and Landsat 8. The numbers you see associated with each band are coefficients used to weight pixel values in those bands and thus generate a transform image.

Tasseled Cap image from Landsat TM scene calibrated to reflectance. Bright areas are more green/vegetated.

MSI: Moisture Stress Index:

MSI=P1599/P819

The Moisture Stress Index is a narrowband index (as opposed to the broadband indices previously discussed see this for more information between the two). This narrowband index requires information in the 1599 nano meter range which is less common for many multispectral sensors used in agricultural applications. I am highlighting it here because water content measurement is important to several precision agriculture applications.In general, as water content increases, spectral absorption at 1599 nm also increases and if this information is available from the sensor, it can be useful to perform canopy stress analyses, perform productivity predictions, and even generate fire hazard condition analyses. With the introduction of UAS and the ability to interchange a payload, if this index would be useful in your application – be sure the sensor includes this wavelength!

RENDVI: Red Edge NDVI

RENDVI = P750-P705/ P750+P705

And finally I am highlighting RENDVI. You can see from the equation itself, it is very similar to NDVI. But instead of using thetraditional main absorption and reflection peaks (Red and NIR respectively) it uses information along the red edge. This is where spectral sensitivity will be found due to subtle changes in canopy foliage content, gap fraction, and senescence. This index is very useful in precision agriculture, forest monitoring, and detecting vegetation stress because it highlights subtle but detectable sensitivities long before changes are visible.

These indices (and many more!) are great ways to generate whole field metrics. And with new data sources enabling very high spatial resolution analyses, imagine the actionable information that can be achieved even on a “per plant” scale. 

Please login or register to post comments.