X

NV5 Geospatial Blog

Each month, NV5 Geospatial posts new blog content across a variety of categories. Browse our latest posts below to learn about important geospatial information or use the search bar to find a specific topic or author. Stay informed of the latest blog posts, events, and technologies by joining our email list!



Mapping Earthquake Deformation in Taiwan With ENVI

Mapping Earthquake Deformation in Taiwan With ENVI

12/15/2025

Unlocking Critical Insights With ENVI® Tools Taiwan sits at the junction of major tectonic plates and regularly experiences powerful earthquakes. Understanding how the ground moves during these events is essential for disaster preparedness, public safety, and building community resilience. But traditional approaches like field... Read More >

Comparing Amplitude and Coherence Time Series With ICEYE US GTR Data and ENVI SARscape

Comparing Amplitude and Coherence Time Series With ICEYE US GTR Data and ENVI SARscape

12/3/2025

Large commercial SAR satellite constellations have opened a new era for persistent Earth monitoring, giving analysts the ability to move beyond simple two-image comparisons into robust time series analysis. By acquiring SAR data with near-identical geometry every 24 hours, Ground Track Repeat (GTR) missions minimize geometric decorrelation,... Read More >

Empowering D&I Analysts to Maximize the Value of SAR

Empowering D&I Analysts to Maximize the Value of SAR

12/1/2025

Defense and intelligence (D&I) analysts rely on high-resolution imagery with frequent revisit times to effectively monitor operational areas. While optical imagery is valuable, it faces limitations from cloud cover, smoke, and in some cases, infrequent revisit times. These challenges can hinder timely and accurate data collection and... Read More >

Easily Share Workflows With the Analytics Repository

Easily Share Workflows With the Analytics Repository

10/27/2025

With the recent release of ENVI® 6.2 and the Analytics Repository, it’s now easier than ever to create and share image processing workflows across your organization. With that in mind, we wrote this blog to: Introduce the Analytics Repository Describe how you can use ENVI’s interactive workflows to... Read More >

Deploy, Share, Repeat: AI Meets the Analytics Repository

Deploy, Share, Repeat: AI Meets the Analytics Repository

10/13/2025

The upcoming release of ENVI® Deep Learning 4.0 makes it easier than ever to import, deploy, and share AI models, including industry-standard ONNX models, using the integrated Analytics Repository. Whether you're building deep learning models in PyTorch, TensorFlow, or using ENVI’s native model creation tools, ENVI... Read More >

1345678910Last
14443 Rate this article:
5.0

Finding Red Lights with Harris Deep Learning

Barrett Sather

 

It’s been almost a year, but I finally have found the time to train a neural network with the job of finding red traffic lights in imagery using our machine learning technology that we call MEGA. In a post in late 2016 I began with example labeling and patch harvesting for the training process, and today I’d like to discuss that process and the results!

After labeling images with examples of red lights, and many more examples of what is not a red light, the MEGA neural network is trained with patches that are clipped out of the imagery. Over time, the MEGA trainer uses a convolutional network to guess at what it believes each training patch to be. Whether correct or incorrect, the weights of the network are then modified so that the model becomes more accurate as the training continues. It can be thought of as a really fancy guess and check.

Once the network has been trained, you can give it completely new imagery that it has never seen before for classification. Below is the test image that we’ll use, which was NOT used in the training (that would be cheating).

Image

This is the classification image for red lights, in which the units are the decimal probability (0.0 – 1.0) that each pixel is a red light.

Image

And here is the heatmap overlaid on the image. You’ll notice that the edges are not classified, as each step in the convolution over the image must have a full patch, so half a patch width on the edge of the image is not classified. For this model, I used a square patch size of 31 pixels.

Image

The model is correctly identifying all red lights in the scene, but is also picking up on a couple more features in the image that look similar. Specifically, it is seeing the red tail light on the black vehicle, and the corner of an orange construction sign. To improve the model, these examples could be added to the “not light” class and re-trained.

In my experience, it is much less time consuming to create a model that finds a target than a model that finds ONLY that target. It takes some time to weed out what we’ve been calling “confusers” from the classification.

As far as accuracy goes between basic feature extraction and deep learning, deep learning has an advantage here because basic feature extraction will pick up the red circle on the sign that reads "NO TURN ON RED".

If you are interested in finding out more about Harris Deep Learning technologies contact us at GeospatialInfo@NV5.com.

Please login or register to post comments.