X

NV5 Geospatial Blog

Each month, NV5 Geospatial posts new blog content across a variety of categories. Browse our latest posts below to learn about important geospatial information or use the search bar to find a specific topic or author. Stay informed of the latest blog posts, events, and technologies by joining our email list!



Easily Share Workflows With the Analytics Repository

Easily Share Workflows With the Analytics Repository

10/27/2025

With the recent release of ENVI® 6.2 and the Analytics Repository, it’s now easier than ever to create and share image processing workflows across your organization. With that in mind, we wrote this blog to: Introduce the Analytics Repository Describe how you can use ENVI’s interactive workflows to... Read More >

Deploy, Share, Repeat: AI Meets the Analytics Repository

Deploy, Share, Repeat: AI Meets the Analytics Repository

10/13/2025

The upcoming release of ENVI® Deep Learning 4.0 makes it easier than ever to import, deploy, and share AI models, including industry-standard ONNX models, using the integrated Analytics Repository. Whether you're building deep learning models in PyTorch, TensorFlow, or using ENVI’s native model creation tools, ENVI... Read More >

Blazing a trail: SaraniaSat-led Team Shapes the Future of Space-Based Analytics

Blazing a trail: SaraniaSat-led Team Shapes the Future of Space-Based Analytics

10/13/2025

On July 24, 2025, a unique international partnership of SaraniaSat, NV5 Geospatial Software, BruhnBruhn Innovation (BBI), Netnod, and Hewlett Packard Enterprise (HPE) achieved something unprecedented: a true demonstration of cloud-native computing onboard the International Space Station (ISS) (Fig. 1). Figure 1. Hewlett... Read More >

NV5 at ESA’s Living Planet Symposium 2025

NV5 at ESA’s Living Planet Symposium 2025

9/16/2025

We recently presented three cutting-edge research posters at the ESA Living Planet Symposium 2025 in Vienna, showcasing how NV5 technology and the ENVI® Ecosystem support innovation across ocean monitoring, mineral exploration, and disaster management. Explore each topic below and access the full posters to learn... Read More >

Monitor, Measure & Mitigate: Integrated Solutions for Geohazard Risk

Monitor, Measure & Mitigate: Integrated Solutions for Geohazard Risk

9/8/2025

Geohazards such as slope instability, erosion, settlement, or seepage pose ongoing risks to critical infrastructure. Roads, railways, pipelines, and utility corridors are especially vulnerable to these natural and human-influenced processes, which can evolve silently until sudden failure occurs. Traditional ground surveys provide only periodic... Read More >

1345678910Last
«November 2025»
SunMonTueWedThuFriSat
2627282930311
2345678
9101112131415
16171819202122
23242526272829
30123456
13498 Rate this article:
No rating

Finding the Nth ordered element in a large array

Anonym

A common task when working with large arrays is to find the Nth array value in the ordered array. This can be useful for finding the Nth smallest or largest pixel value, as well as for statistical analysis of floating point data samples, (i.e. find the 95% percentile or similar). The shortest IDL code for finding the Nth value in the ordered sequence is only 2 lines of actual code. Here is a short function that accomplishes this:

 

;+

; Returns the Nth number in theordered sequence

;-

function ordinal_1, array, N

 compile_opt idl2,logical_predicate

 s = sort(array)

 return, array[s[N]]

end

 

However, because sort is an expensive computation, it runs fairly slow, especially, when the array gets larger. I did the following time test.

IDL> a = total(read_image(filepath('ohare.jpg',subdir=['examples','data'])),1)

IDL> tic & x = ordinal_1(a, 123456) & toc & print, x

% Time elapsed: 3.7200000 seconds.

      150.000

In my case it took 3.72 seconds to find the 123456th smallest array element. The MEDIAN function in IDL, returns the central element in the ordered sequence without doing a full sorting. It is much faster than sorting, because it doesn't have to keep track of all elements and their ordered positions. It only cares about element N/2 in the ordered array. In the following example, repeated calls to MEDIAN and reducing the array size in half every iteration, is used to find the Nth element in the ordered sequence. The code is much longer than the code above, but it does end up running faster:

;+

; Returns the Nth number in theordered sequence.

;

; Uses repeated median.

;-

function ordinal_2, array, N

 compile_opt idl2,logical_predicate

 na = n_elements(array)

 type =size(array, /type)

 target_index = N

 tmp = arg_present(array) ? array : temporary(array)

 ntmp = na

 while ntmp ne target_index do begin

   ntmp = n_elements(tmp)

   val = fix(median(tmp), type=type)

   if target_index gt ntmp/2 then begin

     tmp = tmp[where(tmp gt val, count)]

     target_index -= ntmp-count

   endif else if target_index lt ntmp+1/2 then begin

     tmp = tmp[where(tmp lt val, count)]

   endif else break

   if target_index lt 0 then break

   if target_index ge count then break

   if target_index eq 0 then begin

     val = min(tmp)

     break

   endif

   if target_index eq count-1 then begin

     val = max(tmp)

     break

   endif

 endwhile

 return, val

end

This is the same time test as with the short code:

IDL> tic & x = ordinal_2(a, 123456) & toc & print, x

% Time elapsed: 0.57999992 seconds.

      150.000

 

As can be seen here, the time saving is significant, it goes from 3.72 to 0.58 seconds, and as the array grows larger, the savings can get more significant. This function works for numeric data types such as floating point and integer arrays.

2 comments on article "Finding the Nth ordered element in a large array"

Avatar image

Michael Galloy

I have a HISTOGRAM-based solution that performs a bit better.


Avatar image

Michael Galloy

Link didn't come through in that last comment: http://michaelgalloy.com/2014/07/22/more-on-finding-n-smallest-value-array.html

Please login or register to post comments.