X

NV5 Geospatial Blog

Each month, NV5 Geospatial posts new blog content across a variety of categories. Browse our latest posts below to learn about important geospatial information or use the search bar to find a specific topic or author. Stay informed of the latest blog posts, events, and technologies by joining our email list!



Not All Supernovae Are Created Equal: Rethinking the Universe’s Measuring Tools

Not All Supernovae Are Created Equal: Rethinking the Universe’s Measuring Tools

6/3/2025

Rethinking the Reliability of Type 1a Supernovae   How do astronomers measure the universe? It all starts with distance. From gauging the size of a galaxy to calculating how fast the universe is expanding, measuring cosmic distances is essential to understanding everything in the sky. For nearby stars, astronomers use... Read More >

Using LLMs To Research Remote Sensing Software: Helpful, but Incomplete

Using LLMs To Research Remote Sensing Software: Helpful, but Incomplete

5/26/2025

Whether you’re new to remote sensing or a seasoned expert, there is no doubt that large language models (LLMs) like OpenAI’s ChatGPT or Google’s Gemini can be incredibly useful in many aspects of research. From exploring the electromagnetic spectrum to creating object detection models using the latest deep learning... Read More >

From Image to Insight: How GEOINT Automation Is Changing the Speed of Decision-Making

From Image to Insight: How GEOINT Automation Is Changing the Speed of Decision-Making

4/28/2025

When every second counts, the ability to process geospatial data rapidly and accurately isn’t just helpful, it’s critical. Geospatial Intelligence (GEOINT) has always played a pivotal role in defense, security, and disaster response. But in high-tempo operations, traditional workflows are no longer fast enough. Analysts are... Read More >

Thermal Infrared Echoes: Illuminating the Last Gasp of a Dying Star

Thermal Infrared Echoes: Illuminating the Last Gasp of a Dying Star

4/24/2025

This blog was written by Eli Dwek, Emeritus, NASA Goddard Space Flight Center, Greenbelt, MD and Research Fellow, Center for Astrophysics, Harvard & Smithsonian, Cambridge, MA. It is the fifth blog in a series showcasing our IDL® Fellows program which supports passionate retired IDL users who may need support to continue their work... Read More >

A New Era of Hyperspectral Imaging with ENVI® and Wyvern’s Open Data Program

A New Era of Hyperspectral Imaging with ENVI® and Wyvern’s Open Data Program

2/25/2025

This blog was written in collaboration with Adam O’Connor from Wyvern.   As hyperspectral imaging (HSI) continues to grow in importance, access to high-quality satellite data is key to unlocking new insights in environmental monitoring, agriculture, forestry, mining, security, energy infrastructure management, and more.... Read More >

1345678910Last
21650 Rate this article:
No rating

Hyperspectral Data Reduction

The Spectral Hourglass Series: Part 3

Anonym

Before we begin we must reaffirm the end goal of this process: to find the most spectrally pure, or spectrally unique, pixels (endmembers) within the data set and to map their locations and sub-pixel abundances. Following the step of atmospheric correction we move on to Spectral Data Reduction. Determining the inherent dimensionality of a dataset will allow the analyst to ignore “noisy” data, and identify the number of spectrally distinguishable endmembers through the separation of information from noise.

A hyperspectral image contains a truly overwhelming amount of information, and the efficient and accurate identification of spectral bands containing the most information is a necessary first step. It will be later on that we can use our expertise and other ENVI® tools to identify the endmembers. What we accomplish in this step can be thought of as removing some of the clutter to see our data more clearly.

To accomplish this task of focusing solely on the pure endmembers found within our dataset, we perform a Minimum Noise Fraction (MNF) Transform. The MNF Transform alters the data to allow the analyst to subset a large number of the spectral bands due to the fact that the vast majority of unique spectral information will be contained within the first few MNF Transform bands (Boardman, J.W., 1993, “Automating Spectral Unmixing of AVIRIS DATA Using Geometry Concepts,” In Summaries of the Fourth Annual JPL Airborne Geoscience Workshop, JPL Publ. 93-26, Vol. 1, Jet Propulsion Laboratory, Pasadena, CA, pp. 11-14). In favor of describing how this is employed in ENVI, I will leave it up to our fine documentation center to deliver a much more detailed explanation of MNF Transform and its implementation within ENVI.

One can accomplish this task of spectral data reduction through the use of the ENVI interface. The first portion of this transform consists of estimating the noise statistics from the data using a shift difference technique. You can accomplish this in ENVI by selecting a spatial subset of spectrally uniform data to then calculate a noise statistic baseline. A homogenous group of pixels should demonstrate a similar spectral signature; variance within the spectra is assumed to be the result of noise and thus a noise statistic baseline can be calculated.

After some moments of processing ENVI will display the MNF transformed image as well as display a profile containing the MNF Eigenvalues. Bands with large eigenvalues (greater than 1) contain data, and bands with eigenvalues near or less than one contain noise. Recall the file we are using, cup95eff.int, which is a hyperspectral image that only contains fifty spectral bands. This is of importance because the number of spectral bands in your data will always be equal to the highest eigenvalue number.

The MNF Eigenvalues plot displayed shows that we will be able to subset a large number of spectral bands. After eigenvalue number 30 the eigenvalue falls below one, and we know that we can essentially discard nearly half of the data, even more if you what you seek in your imagery is relatively abundant within the scene. A quick note; many people will find a high eigenvalue number to be of importance so ENVI does not discard any of the information, it is up to the user to decide what is and is not important to their pursuit.

MNF Band 1 contains the largest eigenvalue and as a result the largest amount of variance. It is necessary to visually inspect the transform bands and the Band Animation Tool makes this task extremely easy. Within the Band Animation tool you will be able to cycle through all of the transform bands to determine which bands contain strictly noise and will not aide in the identification of endmembers. The first few bands will appear similar to grayscale images and as you get to MNF Band 15 and 20 you can seethe image more closely resembles a TV with bad signal.


MNF Band 1

Through viewing the bands created by the MNF Transform tool we can start to weed out the superfluous data and focus only on the most interesting information.


MNF Band 20

Although the vast majority of the pixels in MNF Band 20 seem to be very noisy, the dark region could highlight a homogenous grouping of pixels with unique spectra. Further investigation of the spectral profile of those pixels and comparison against a spectral library will allow us to identify the presence of Alunite, that is further along in the spectral hourglass workflow.

We are well on our way to extracting the most pure endmembers from our dataset with the help of some high-powered ENVI tools. The next few steps will begin to rely more heavily on the expertise of the user as well as the n-D Visualizer tool found within ENVI.

You can also go the programmatic route and write scripts to perform an MNF transform using the ENVIForwardMNFTransformTask and ENVIInverseMNFTransformTask routines.

Read The Spectral Hourglass Series: Part 4, Spatial Data Reduction and Pixel Purity Index

Read The Spectral Hourglass Series: Part 2, Spatial/Spectral Browsing and Endmembers

Please login or register to post comments.