X

NV5 Geospatial Blog

Each month, NV5 Geospatial posts new blog content across a variety of categories. Browse our latest posts below to learn about important geospatial information or use the search bar to find a specific topic or author. Stay informed of the latest blog posts, events, and technologies by joining our email list!



Easily Share Workflows With the Analytics Repository

Easily Share Workflows With the Analytics Repository

10/27/2025

With the recent release of ENVI® 6.2 and the Analytics Repository, it’s now easier than ever to create and share image processing workflows across your organization. With that in mind, we wrote this blog to: Introduce the Analytics Repository Describe how you can use ENVI’s interactive workflows to... Read More >

Deploy, Share, Repeat: AI Meets the Analytics Repository

Deploy, Share, Repeat: AI Meets the Analytics Repository

10/13/2025

The upcoming release of ENVI® Deep Learning 4.0 makes it easier than ever to import, deploy, and share AI models, including industry-standard ONNX models, using the integrated Analytics Repository. Whether you're building deep learning models in PyTorch, TensorFlow, or using ENVI’s native model creation tools, ENVI... Read More >

Blazing a trail: SaraniaSat-led Team Shapes the Future of Space-Based Analytics

Blazing a trail: SaraniaSat-led Team Shapes the Future of Space-Based Analytics

10/13/2025

On July 24, 2025, a unique international partnership of SaraniaSat, NV5 Geospatial Software, BruhnBruhn Innovation (BBI), Netnod, and Hewlett Packard Enterprise (HPE) achieved something unprecedented: a true demonstration of cloud-native computing onboard the International Space Station (ISS) (Fig. 1). Figure 1. Hewlett... Read More >

NV5 at ESA’s Living Planet Symposium 2025

NV5 at ESA’s Living Planet Symposium 2025

9/16/2025

We recently presented three cutting-edge research posters at the ESA Living Planet Symposium 2025 in Vienna, showcasing how NV5 technology and the ENVI® Ecosystem support innovation across ocean monitoring, mineral exploration, and disaster management. Explore each topic below and access the full posters to learn... Read More >

Monitor, Measure & Mitigate: Integrated Solutions for Geohazard Risk

Monitor, Measure & Mitigate: Integrated Solutions for Geohazard Risk

9/8/2025

Geohazards such as slope instability, erosion, settlement, or seepage pose ongoing risks to critical infrastructure. Roads, railways, pipelines, and utility corridors are especially vulnerable to these natural and human-influenced processes, which can evolve silently until sudden failure occurs. Traditional ground surveys provide only periodic... Read More >

1345678910Last
«November 2025»
SunMonTueWedThuFriSat
2627282930311
2345678
9101112131415
16171819202122
23242526272829
30123456
17816 Rate this article:
3.2

IDL's HISTOGRAM function

Anonym

IDL's HISTOGRAM function

IDL's HISTOGRAM function is one of the most versatile functionsI can think of. It can be very fast and efficient for a number of common tasks.

1. Plotting a histogram is an effective way to investigate statisticalproperties of data. A probability density graph quickly shows the distribution:

IDL> a = randomn(seed, 100000)+15.5+3*randomn(seed, 100000)

IDL> p = plot(location,histogram(a,nbins=1000,location=location),'r')

histogram plot

From the histogram, you could quickly conclude that asuitable range for BYTSCL might be MIN=10.0, MAX=20.0.

2. Finding percentiles in a programmatic way can be doneusing lookups in the cumulative histogram, for example if you want to find the5% and 95% in a dataset:

IDL> a = randomn(seed, 100000)+15.5+3*randomn(seed, 100000)

IDL> location[value_locate(total(histogram(a,nbins=1000,location=location),/cumulative)/a.length,[0.05,0.95])]

      10.285119       20.638901

Which shows that about 90% of the values are between 10.29and 20.64.

3. Finding the most common number in an array of integers.

IDL> arr = [3,7,34,5,8,8,5,31,5,8]

IDL> location[where(histogram(arr) eq max(histogram(arr,location=location)))]

       5       8

This shows a tie between 5 and 8 for the most abundant valuein the array.

4. Sorting can also be performed with HISTOGRAM. For example2-D sorting into a grid and computing the mean "F" value for eachgrid tile:

IDL> x = 45*randomu(seed, 100000)

IDL> y = 32*randomu(seed, 100000)

IDL> f = 5.5*randomn(seed, 100000) + 16

IDL> grid_index = floor(x + floor(y)*ceil(max(x)))

IDL> h = histogram(grid_index, min=0, binsize=1,reverse_indices=rev)

IDL> f_means = dblarr(ceil([max(x),max(y)]))

IDL> for i=0,h.length-1 do if h[i] gt 0 then f_means[i] = mean(f[rev[rev[i]:rev[i+1]-1]])

Check one of the values using the slower "WHERE"approach:

IDL> f_means[6,8]

      15.784905433654785

IDL> mean(f[where(floor(x) eq 6 and floor(y) eq 8)])

       15.784905

Please login or register to post comments.