X

NV5 Geospatial Blog

Each month, NV5 Geospatial posts new blog content across a variety of categories. Browse our latest posts below to learn about important geospatial information or use the search bar to find a specific topic or author. Stay informed of the latest blog posts, events, and technologies by joining our email list!



From Image to Insight: How GEOINT Automation Is Changing the Speed of Decision-Making

From Image to Insight: How GEOINT Automation Is Changing the Speed of Decision-Making

4/28/2025

When every second counts, the ability to process geospatial data rapidly and accurately isn’t just helpful, it’s critical. Geospatial Intelligence (GEOINT) has always played a pivotal role in defense, security, and disaster response. But in high-tempo operations, traditional workflows are no longer fast enough. Analysts are... Read More >

Thermal Infrared Echoes: Illuminating the Last Gasp of a Dying Star

Thermal Infrared Echoes: Illuminating the Last Gasp of a Dying Star

4/24/2025

This blog was written by Eli Dwek, Emeritus, NASA Goddard Space Flight Center, Greenbelt, MD and Research Fellow, Center for Astrophysics, Harvard & Smithsonian, Cambridge, MA. It is the fifth blog in a series showcasing our IDL® Fellows program which supports passionate retired IDL users who may need support to continue their work... Read More >

A New Era of Hyperspectral Imaging with ENVI® and Wyvern’s Open Data Program

A New Era of Hyperspectral Imaging with ENVI® and Wyvern’s Open Data Program

2/25/2025

This blog was written in collaboration with Adam O’Connor from Wyvern.   As hyperspectral imaging (HSI) continues to grow in importance, access to high-quality satellite data is key to unlocking new insights in environmental monitoring, agriculture, forestry, mining, security, energy infrastructure management, and more.... Read More >

Ensure Mission Success With the Deployable Tactical Analytics Kit (DTAK)

Ensure Mission Success With the Deployable Tactical Analytics Kit (DTAK)

2/11/2025

In today’s fast-evolving world, operational success hinges on real-time geospatial intelligence and data-driven decisions. Whether it’s responding to natural disasters, securing borders, or executing military operations, having the right tools to integrate and analyze data can mean the difference between success and failure.... Read More >

How the COVID-19 Lockdown Improved Air Quality in Ecuador: A Deep Dive Using Satellite Data and ENVI® Software

How the COVID-19 Lockdown Improved Air Quality in Ecuador: A Deep Dive Using Satellite Data and ENVI® Software

1/21/2025

The COVID-19 pandemic drastically altered daily life, leading to unexpected environmental changes, particularly in air quality. Ecuador, like many other countries, experienced significant shifts in pollutant concentrations due to lockdown measures. In collaboration with Geospace Solutions and Universidad de las Fuerzas Armadas ESPE,... Read More >

1345678910Last
«May 2025»
SunMonTueWedThuFriSat
27282930123
45678910
11121314151617
18192021222324
25262728293031
1234567
15144 Rate this article:
5.0

Multispectral vs. Hyperspectral Imaging – Enhancing Vegetation Mapping Accuracy

Nicolai Holzer

Data from multispectral satellite constellations like Landsat and SPOT have long been utilized for land use mapping and vegetation classification. Sentinel-2 builds on this legacy, providing similar moderate-resolution data acquired in broad spectral bands that cover visible, near infrared, and short-wave infrared wavelengths. Even though the MultiSpectral Instrument (MSI) payload of Sentinel-2 is tuned for vegetation mapping by sampling 13 well positioned spectral bands at spatial resolutions of 10m, 20m and 60m, in most cases hyperspectral imagery offers improved accuracy for this purpose. 

What is Hyperspectral Imaging?

While multispectral sensors capture images in a limited number of broad spectral bands, hyperspectral sensors acquire images with hundreds of narrow and contiguous spectral bands, ideally covering the entire electromagnetic spectrum. The increased spectral resolution of hyperspectral imagery enables the extraction of distinct spectral characteristics that may not be visible in multispectral images.

The additional spectral information provided by hyperspectral imaging allows for a deeper analysis of land surface features. It facilitates the identification and differentiation of similar objects, making it easier to classify vegetation types accurately.

A recent study by Jarocińska et al. published in Nature Scientific Reports (2023) investigated the extent to which additional spectral information improves the accuracy of identifying vegetation habitats with similar spectral properties. The study was conducted in five areas for non-forest EU Natura 2000 habitats and focused on four types of habitats: meadows, grasslands, heaths, and mires. (Figure 1).

 

Fig. 1: Images of analyzed vegetation ecosystems in Poland with habitat type and Natura 2000 code.

The study utilized multispectral data from the Sentinel-2 satellite and hyperspectral data from airborne HySpex sensors. Image preprocessing employed advanced spectral analytics using ENVI® software. ENVI is the industry standard for processing and analyzing hyperspectral data with the ability to capture the subtle spectral signatures in hyperspectral data. To ensure a fair comparison, the hyperspectral imagery was down-sampled to match the spatial resolution of Sentinel-2 (10m).

The results of the study demonstrated that hyperspectral data generally achieved higher classification accuracies compared to multispectral Sentinel-2 imagery, regardless of the habitat type. The F1 accuracy, on average, was 0.14 higher when using hyperspectral data (Figure 2). The authors conclude that the difference in accuracy was not constant, as it varied by area and habitat characterization. However, the authors emphasized that hyperspectral imagery was crucial for accurately mapping salt meadows (1340), Molinia meadows (6410), and lowland hay meadows (6510).

Conclusion

The study highlights the significant advantages of hyperspectral imaging over multispectral imaging for vegetation mapping. The increased spectral resolution enables more precise identification and differentiation of land surface features, ultimately improving classification accuracy.

Fig. 2: Distribution of F1 accuracy values for each Natura 2000 habitat – comparing hyperspectral from airborne HySpex (HS) sensor (black) vs. multispectral from satellite Sentinel-2 (S2) sensor (red).

References

Jarocińska, A., Kopeć, D., Niedzielko, J. et al. (2023): The utility of airborne hyperspectral and satellite multispectral images in identifying Natura 2000 non-forest habitats for conservation purposes. Sci Rep 13, 4549. https://doi.org/10.1038/s41598-023-31705-6

 

Please login or register to post comments.