X

NV5 Geospatial Blog

Each month, NV5 Geospatial posts new blog content across a variety of categories. Browse our latest posts below to learn about important geospatial information or use the search bar to find a specific topic or author. Stay informed of the latest blog posts, events, and technologies by joining our email list!



Not All Supernovae Are Created Equal: Rethinking the Universe’s Measuring Tools

Not All Supernovae Are Created Equal: Rethinking the Universe’s Measuring Tools

6/3/2025

Rethinking the Reliability of Type 1a Supernovae   How do astronomers measure the universe? It all starts with distance. From gauging the size of a galaxy to calculating how fast the universe is expanding, measuring cosmic distances is essential to understanding everything in the sky. For nearby stars, astronomers use... Read More >

Using LLMs To Research Remote Sensing Software: Helpful, but Incomplete

Using LLMs To Research Remote Sensing Software: Helpful, but Incomplete

5/26/2025

Whether you’re new to remote sensing or a seasoned expert, there is no doubt that large language models (LLMs) like OpenAI’s ChatGPT or Google’s Gemini can be incredibly useful in many aspects of research. From exploring the electromagnetic spectrum to creating object detection models using the latest deep learning... Read More >

From Image to Insight: How GEOINT Automation Is Changing the Speed of Decision-Making

From Image to Insight: How GEOINT Automation Is Changing the Speed of Decision-Making

4/28/2025

When every second counts, the ability to process geospatial data rapidly and accurately isn’t just helpful, it’s critical. Geospatial Intelligence (GEOINT) has always played a pivotal role in defense, security, and disaster response. But in high-tempo operations, traditional workflows are no longer fast enough. Analysts are... Read More >

Thermal Infrared Echoes: Illuminating the Last Gasp of a Dying Star

Thermal Infrared Echoes: Illuminating the Last Gasp of a Dying Star

4/24/2025

This blog was written by Eli Dwek, Emeritus, NASA Goddard Space Flight Center, Greenbelt, MD and Research Fellow, Center for Astrophysics, Harvard & Smithsonian, Cambridge, MA. It is the fifth blog in a series showcasing our IDL® Fellows program which supports passionate retired IDL users who may need support to continue their work... Read More >

A New Era of Hyperspectral Imaging with ENVI® and Wyvern’s Open Data Program

A New Era of Hyperspectral Imaging with ENVI® and Wyvern’s Open Data Program

2/25/2025

This blog was written in collaboration with Adam O’Connor from Wyvern.   As hyperspectral imaging (HSI) continues to grow in importance, access to high-quality satellite data is key to unlocking new insights in environmental monitoring, agriculture, forestry, mining, security, energy infrastructure management, and more.... Read More >

1345678910Last
14538 Rate this article:
5.0

Social Media and Image Analysis

Anonym

The streams of data that are available these days are staggering. There are more and more ways to mine social media in order to find original and thought provoking metrics. In some ways, I see remote sensing as its own social media stream, like each pixel is tweeting something about the world. Is it green, blue, has it changed, does it influence its neighboring pixels? Groups of pixels can comprise an object and those objects also can exist, “Hey, I’m green grass” or change, “I was dry grass last week, but I’ve greened up.” With collections over time, this information can predictably evolve e.g. “I was dry grass, then I became vegetation, then I died, then I greened up again.” If we attempt to model this pixel, it would predictably die again. Each pixel, object, image has something to say—and the world of social media can have something to say about imagery. Geotagged pictures, tweets, weather information, political events, and policy changes can all be tagged as additional content to information contained in imagery. And with that information, the ability to model and predict about the world around us becomes infinite.

 

Imagery can be thought in the same unstructured terms as social media—it’s another piece of the puzzle that may or may not take a predefined shape. Think about being able to mine imagery with hash tags—the presence of certain objects cues a tag or a change in an area cues another kind of tag. There is an abundance of new high-resolution sources of imagery from SkyBox, Urthecast and Planet Labs—especially video components. But is all that data really interesting? Can data from these and other instruments be searched for only what is interesting and catalogued by that information? An extreme example of this could be for security analysis. Take the Empire State Building--images collected every day, a couple videos, and show people coming and going. The building itself is unchanging. The change a security analyst would be interested in would be the sudden appearance of any kind box larger than a square foot. Once that change occurs, suddenly the previous images have value for showing the change as opposed to before when they just showed consistency. When that change occurs, the change is tagged and communicated. The concept is similar to a person who tweets constantly that she, “is sitting on the couch.” It isn’t really interesting until “sitting on the couch” becomes “My house is on fire and it’s spreading to others #Boulder”.

 

I read an interesting article on offering masters in DataScience on GNIP’s blog https://blog.gnip.com/data-science-masters/. GNIP is an organization specializing in delivering APIs for social media feeds. In many ways remote sensing has tackled the difficulty of being a scientist studying phenomena like botany who needs math skills, computer science skills, and visualization skills in order to use all the tools available to a botanist. The remote sensing community has much to offer the world of big data by the nature of the disciple, but it must also be on the receptor end—integrating data from outside of itself. Community remote sensing, CRS, is nothing new. This Article from Annelie Schoenmaker defines CRS as, “Location technology that combines remote sensing with citizen science, social networks and crowd-sourcing to enhance the data obtained from traditional sources. It includes the collection, calibration, analysis, communication or application of remotely sensed information by these community means.” At present, the remote sensing big data people and other big data people might mingle at a conference, but the connections are still being forged.

 

With data feeds from Twitter and other social media sources being mineable, the contextual information that can be discovered about imagery is infinite; it’s a matter of asking the right questions. What questions should remote sensing, earth science, and defense and intelligence be asking social media to enhance information that is already contained in imagery? Can this information be used to either predict what will happen next orto forensically understand what has just happened? Who is thinking about this in the remote sensing community? How can these connections be fostered? How does image analysis software need to integrate with social media feeds? If I come up with more thoughts, I’ll tweet about it. My request is that you do too. @asoconnor 

Please login or register to post comments.