X

NV5 Geospatial Blog

Each month, NV5 Geospatial posts new blog content across a variety of categories. Browse our latest posts below to learn about important geospatial information or use the search bar to find a specific topic or author. Stay informed of the latest blog posts, events, and technologies by joining our email list!



Mapping Earthquake Deformation in Taiwan With ENVI

Mapping Earthquake Deformation in Taiwan With ENVI

12/15/2025

Unlocking Critical Insights With ENVI® Tools Taiwan sits at the junction of major tectonic plates and regularly experiences powerful earthquakes. Understanding how the ground moves during these events is essential for disaster preparedness, public safety, and building community resilience. But traditional approaches like field... Read More >

Comparing Amplitude and Coherence Time Series With ICEYE US GTR Data and ENVI SARscape

Comparing Amplitude and Coherence Time Series With ICEYE US GTR Data and ENVI SARscape

12/3/2025

Large commercial SAR satellite constellations have opened a new era for persistent Earth monitoring, giving analysts the ability to move beyond simple two-image comparisons into robust time series analysis. By acquiring SAR data with near-identical geometry every 24 hours, Ground Track Repeat (GTR) missions minimize geometric decorrelation,... Read More >

Empowering D&I Analysts to Maximize the Value of SAR

Empowering D&I Analysts to Maximize the Value of SAR

12/1/2025

Defense and intelligence (D&I) analysts rely on high-resolution imagery with frequent revisit times to effectively monitor operational areas. While optical imagery is valuable, it faces limitations from cloud cover, smoke, and in some cases, infrequent revisit times. These challenges can hinder timely and accurate data collection and... Read More >

Easily Share Workflows With the Analytics Repository

Easily Share Workflows With the Analytics Repository

10/27/2025

With the recent release of ENVI® 6.2 and the Analytics Repository, it’s now easier than ever to create and share image processing workflows across your organization. With that in mind, we wrote this blog to: Introduce the Analytics Repository Describe how you can use ENVI’s interactive workflows to... Read More >

Deploy, Share, Repeat: AI Meets the Analytics Repository

Deploy, Share, Repeat: AI Meets the Analytics Repository

10/13/2025

The upcoming release of ENVI® Deep Learning 4.0 makes it easier than ever to import, deploy, and share AI models, including industry-standard ONNX models, using the integrated Analytics Repository. Whether you're building deep learning models in PyTorch, TensorFlow, or using ENVI’s native model creation tools, ENVI... Read More >

1345678910Last
«February 2026»
SunMonTueWedThuFriSat
25262728293031
1234567
891011121314
15161718192021
22232425262728
1234567
19779 Rate this article:
4.8

Using ENVI Tools to Create Labeled Images for Deep Learning

Jason Wolfe

With the release of the ENVI® Deep Learning module, the process of extracting features from images has become much simpler for remote sensing users. As I discussed in my last blog article, part of this simplicity comes from the ability to use ENVI’s preprocessing and spectral tools to create labeled datasets. Why spend countless hours tediously drawing regions of interest (ROIs) around example features, when you could partially automate the labeling process? In this article I will show an example where I used band ratio images to create labeled datasets for training and validating a deep learning model to look for man-made ("built-up") features in aerial imagery.

I downloaded 16 adjacent National Agriculture Imagery Program (NAIP) images from the USGS EarthExplorer site. These were 1-meter, four-band images of a region in northern San Antonio, Texas, acquired in October of 2016. I used the ENVI Seamless Mosaic tool to quickly create a georeferenced mosaic from the images. Then I created two spatial subsets from the mosaic: one for training and another for validating that the deep learning model correctly learns the features I am interested in. My ultimate goal was to extract from the NAIP mosaic all of the roads, disturbed earth, structures, and other features that indicated human development.

Normally I would draw polyline and polygon ROIs over all of the built-up features in the training and validation images. However, I tried a faster process instead:

1. Create a blue / near-infrared band ratio image that highlights these features while suppressing the spectral signature of vegetation.

2. Apply a 5% linear stretch to the ratio image using Run Task > Linear Percent Stretch Raster in the ENVI Toolbox. This provided even more contrast between the built-up features and the background.

3. Create an ROI threshold layer from the stretched image, where pixel values above 200 are highlighted in red.

4. Use the Run Task > Convert ROIs to Classification task in the ENVI Toolbox to convert the result to a classification image.

The result provided a good starting point for identifying the feature pixels in the training and validation images, without requiring any drawing or labeling by hand. The result was not perfect, so some further but minimal editing was needed. I used the Edit Classification Image tool to remove incorrectly classified pixels such as shadows and water, and I added several more pixels to the “built-up” class.

5. Use the Deep Learning > Build Label Raster From Classification tool to create a label raster for training a deep learning model.

The entire process of steps 1-5 only took about 20 minutes, plus it had the added benefit of defining the shapes of the built-up features rather than just marking their locations. Training a deep learning model to identify these features took an additional 30 minutes on my system with an 8 GB graphics card. Then I used the trained model to classify the entire NAIP mosaic, which only took a few minutes. Here is a sample of the resulting class activation image. The model learned to identify nearly all of the built-up features, shown in white below:

Here is a comparison between a NAIP mosaic sample and the corresponding class activation image:

Applying a raster color slice to the class activation image shows the areas with the highest probability (red-orange) of belonging to the “built-up” class. Similar models can be trained and applied to extract rooftops and impervious surfaces from images that cover wide geographic areas.

In closing, the wide variety of image-processing tools in ENVI can help speed up the process of preparing data for deep learning. One example would be using target detection tools such as Adaptive Coherence Estimator (ACE) or Matched Filter to label features of interest in hyperspectral imagery. Other spectral tools that can effectively highlight objects in imagery include Spectral Indices, Principal Component Analysis, and Dimensionality Expansion.

Please login or register to post comments.