X

NV5 Geospatial Blog

Each month, NV5 Geospatial posts new blog content across a variety of categories. Browse our latest posts below to learn about important geospatial information or use the search bar to find a specific topic or author. Stay informed of the latest blog posts, events, and technologies by joining our email list!



From Image to Insight: How GEOINT Automation Is Changing the Speed of Decision-Making

From Image to Insight: How GEOINT Automation Is Changing the Speed of Decision-Making

4/28/2025

When every second counts, the ability to process geospatial data rapidly and accurately isn’t just helpful, it’s critical. Geospatial Intelligence (GEOINT) has always played a pivotal role in defense, security, and disaster response. But in high-tempo operations, traditional workflows are no longer fast enough. Analysts are... Read More >

Thermal Infrared Echoes: Illuminating the Last Gasp of a Dying Star

Thermal Infrared Echoes: Illuminating the Last Gasp of a Dying Star

4/24/2025

This blog was written by Eli Dwek, Emeritus, NASA Goddard Space Flight Center, Greenbelt, MD and Research Fellow, Center for Astrophysics, Harvard & Smithsonian, Cambridge, MA. It is the fifth blog in a series showcasing our IDL® Fellows program which supports passionate retired IDL users who may need support to continue their work... Read More >

A New Era of Hyperspectral Imaging with ENVI® and Wyvern’s Open Data Program

A New Era of Hyperspectral Imaging with ENVI® and Wyvern’s Open Data Program

2/25/2025

This blog was written in collaboration with Adam O’Connor from Wyvern.   As hyperspectral imaging (HSI) continues to grow in importance, access to high-quality satellite data is key to unlocking new insights in environmental monitoring, agriculture, forestry, mining, security, energy infrastructure management, and more.... Read More >

Ensure Mission Success With the Deployable Tactical Analytics Kit (DTAK)

Ensure Mission Success With the Deployable Tactical Analytics Kit (DTAK)

2/11/2025

In today’s fast-evolving world, operational success hinges on real-time geospatial intelligence and data-driven decisions. Whether it’s responding to natural disasters, securing borders, or executing military operations, having the right tools to integrate and analyze data can mean the difference between success and failure.... Read More >

How the COVID-19 Lockdown Improved Air Quality in Ecuador: A Deep Dive Using Satellite Data and ENVI® Software

How the COVID-19 Lockdown Improved Air Quality in Ecuador: A Deep Dive Using Satellite Data and ENVI® Software

1/21/2025

The COVID-19 pandemic drastically altered daily life, leading to unexpected environmental changes, particularly in air quality. Ecuador, like many other countries, experienced significant shifts in pollutant concentrations due to lockdown measures. In collaboration with Geospace Solutions and Universidad de las Fuerzas Armadas ESPE,... Read More >

1345678910Last
«May 2025»
SunMonTueWedThuFriSat
27282930123
45678910
11121314151617
18192021222324
25262728293031
1234567
15823 Rate this article:
3.8

Using SWIR and LWIR Imagery to Analyze Forest Fires

Anonym

Recently I've been interested in the utilization of multispectral imagery acquired in the SWIR and LWIR wavelength regions when analyzing natural disasters such as forest fires. Obviously the thermal properties captured in the LWIR wavelengths help identify hotspots and distinguish high (colder) clouds from low (warmer) smoke. Furthermore, light in the SWIR wavelength region can penetrate haze and certain types of smoke. Consequently, SWIR-based imaging can provide the ability to "see through" smoke to better analyze the active portion of a forest fire and identify hotspots.

There's a wide variety of scenarios where remote sensing analysis can help understand a wildfire ranging from during-fire disaster response support to post-fire forensic analysis. Obviously in the during-fire scenario it is absolutely critical to acquire imagery, derive information and get it into the hands of the personnel fighting the fire as soon as possible. Active forest fire analysis is where the airborne ISR systems and services provided by companies such as Range and Bearing excel since imagery of a wildfire begins to lose its usefulness immediately after being acquired. Sensor platforms such as WorldView-3 also provide multispectral imagery covering the SWIR wavelengths which can provide during-fire intelligence (depending upon data availability timeframe) and post-fire forensic analysis as discussed in DigitalGlobe's recent blog post:

Revealing the Hidden World with Shortwave Infrared (SWIR) Imagery

Since I do not have access to RAB or WV-3 data of a wildfire at this time I decided to see if I could find a Landsat 8 scene for one of the numerous wildfires that occurred in 2014. The Landsat 8 OLI/TIR sensor platform and availability of the data for free on USGS EarthExplorer never ceases to amaze me as I was able to find a relatively cloud-free scene of the Chelaslie River fire in British Columbia acquired on 03 Aug 2014. Here is a screenshot of a simple RGB band combination image from this dataset:

Image data downloaded from USGS EarthExplorer

 

While active forest fire smoke is clearly visible without aggressive stretching it is difficult to visually identify the burned areas and other features in this image. So let's take the two SWIR bands and display them in a raster layer with R=SWIR2 | G=SWIR1 | B=SWIR2 band combination:

Image data downloaded from USGS EarthExplorer

 

Notice the smoke has almost entirely disappeared and the burned areas (pink) and active fire (white) are clearly visible. For example, look at the patch of forest that burned along the left-hand side of the image that is not readily apparent in the visible wavelengths. Now let's take a look at band TIR1 with a rainbow color table applied:,/p>

Image data downloaded from USGS EarthExplorer

 

I was quite surprised by the thermal intensity of the burned area along the left-hand side which does not currently have smoke emanating in the RGB image. So far I've been illustrating the power of simple visual interpretation of this imagery but you can, of course, perform image processing analysis to help derive intelligence products from multispectral datasets. One useful analysis technique is the calculation of spectral indices such as the Normalized Burn Ratio now available in ENVI 5.2 within the new "Spectral Index" tool and associated programmatic API. The Normalized Burn Ratio (NBR) spectral index has a fairly simple formula:

When Normalized Burn Ratio is calculated it produces a raster image where darker pixels indicate burned areas:

Image data downloaded from USGS EarthExplorer

 

The real power of the Normalized Burn Ratio spectral index is exhibited when you create pre-fire and post-fire NBR images then subtract the post-fire NBR raster from the pre-fire NBR raster to create a Differenced Normalized Burn Ratio (DNBR) image that indicates burn severity. This DNBR = PreFireNBR - PostFireNBR raster calculation can easily be executed using the "Band Math" tool within the ENVI software. Unfortunately I was unable to find a good post-fire Landsat scene as most have either clouds or snow obscuring the burned areas but hopefully we'll get a good scene this upcoming summer to perform forensic analysis on the burn severity of the Chelaslie River forest fire.

Please login or register to post comments.