X

NV5 Geospatial Blog

Each month, NV5 Geospatial posts new blog content across a variety of categories. Browse our latest posts below to learn about important geospatial information or use the search bar to find a specific topic or author. Stay informed of the latest blog posts, events, and technologies by joining our email list!



Easily Share Workflows With the Analytics Repository

Easily Share Workflows With the Analytics Repository

10/27/2025

With the recent release of ENVI® 6.2 and the Analytics Repository, it’s now easier than ever to create and share image processing workflows across your organization. With that in mind, we wrote this blog to: Introduce the Analytics Repository Describe how you can use ENVI’s interactive workflows to... Read More >

Deploy, Share, Repeat: AI Meets the Analytics Repository

Deploy, Share, Repeat: AI Meets the Analytics Repository

10/13/2025

The upcoming release of ENVI® Deep Learning 4.0 makes it easier than ever to import, deploy, and share AI models, including industry-standard ONNX models, using the integrated Analytics Repository. Whether you're building deep learning models in PyTorch, TensorFlow, or using ENVI’s native model creation tools, ENVI... Read More >

Blazing a trail: SaraniaSat-led Team Shapes the Future of Space-Based Analytics

Blazing a trail: SaraniaSat-led Team Shapes the Future of Space-Based Analytics

10/13/2025

On July 24, 2025, a unique international partnership of SaraniaSat, NV5 Geospatial Software, BruhnBruhn Innovation (BBI), Netnod, and Hewlett Packard Enterprise (HPE) achieved something unprecedented: a true demonstration of cloud-native computing onboard the International Space Station (ISS) (Fig. 1). Figure 1. Hewlett... Read More >

NV5 at ESA’s Living Planet Symposium 2025

NV5 at ESA’s Living Planet Symposium 2025

9/16/2025

We recently presented three cutting-edge research posters at the ESA Living Planet Symposium 2025 in Vienna, showcasing how NV5 technology and the ENVI® Ecosystem support innovation across ocean monitoring, mineral exploration, and disaster management. Explore each topic below and access the full posters to learn... Read More >

Monitor, Measure & Mitigate: Integrated Solutions for Geohazard Risk

Monitor, Measure & Mitigate: Integrated Solutions for Geohazard Risk

9/8/2025

Geohazards such as slope instability, erosion, settlement, or seepage pose ongoing risks to critical infrastructure. Roads, railways, pipelines, and utility corridors are especially vulnerable to these natural and human-influenced processes, which can evolve silently until sudden failure occurs. Traditional ground surveys provide only periodic... Read More >

1345678910Last
«November 2025»
SunMonTueWedThuFriSat
2627282930311
2345678
9101112131415
16171819202122
23242526272829
30123456
17341 Rate this article:
3.5

Base 60 encoding of positive floating point numbers in IDL

Anonym

Here is an example of representing numbers efficiently using a restricted set of symbols. I am using a set of 60 symbols (or characters) to encode floating point numbers as strings of any selected length. The longer the strings are, the more precise the numbers will potentially be.

 

Here is an example of a representation, this is restricted to positive numbers, in order to keep the example short.

 
IDL> a=[14.33, 3.1415, 12345]
IDL> a
       14.330000       3.1415000       12345.000
IDL> base60(a)
FotV*
FdiDx
HdzS*
IDL> base60(a, precision=8)
FotV**aO
FdiDx*^c
HdzS****
IDL> base60(base60(a)) - a
 -4.5533356836102712e-006 -4.6258149324351905e-006    -0.016666666666424135
IDL> base60(base60(a, precision=8)) - a
 -9.2104102122902987e-012 -4.6052051061451493e-013 -7.7159711509011686e-008
 
In this example, it can be seen that the 5-digit representations are not as close to the original numbers as the 8-digit representations.
 
The code example for the base60 function is listed below.
;
; Converts from a numeric type to a base 60 representation
; Converts from a base 60 string to a floating point representation
; PRECISION is only used to determine how many symbols to use when encoding,
; and is ignored for decoding.
function Base60, input, precision=precision
  compile_opt idl2,logical_predicate
 
  ; set default precision of 5 digits for encoding only
  if ~keyword_set(precision) then precision = 5
 
  ; base 60 symbology
  symbols = 'abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ!@#$%^&*'
  base = strlen(symbols)
 
  ; fast conversion from symbol to value
  lut = bytarr(256)
  lut[byte(symbols)] = bindgen(base)
 
  if isa(input, /string) then begin
    ; convert from base60 string to float
    ; find exponent first
    scale = replicate(double(base),n_elements(input)) ^ $
      (lut[byte(strmid(input,0,1))] - base/2)
    res = dblarr(n_elements(input))
    for i=max(strlen(input))-1,1,-1 do begin
      dig = lut[byte(strmid(input,i,1))]
      res += dig
      res /= base
    endfor
    res *= scale
  endif else begin
    ; convert from float to base60 strings
    ; encode exponent(scale) first
    ex = intarr(n_elements(input))
    arr = input
    dbase = double(base)
    repeat begin
      dec = fix(arr ge 1)
      ex += dec
      arr *= dbase ^ (-dec)
      inc = fix(arr lt 1/dbase)
      ex -= inc
      arr *= dbase ^ inc
    endrep until array_equal(arr lt 1 and arr ge 1/dbase,1b)
    if max(ex) ge base/2 || min(ex) lt -base/2 then begin
      message, 'Number is outside representable range'
    endif
    bsym = byte(symbols)
    res = string(bsym[reform(ex+base/2,1,n_elements(ex))])
    for i=1,precision-1 do begin
      arr *= base
      fl = floor(arr)
      arr -= fl
      res += string(bsym[reform(fl,1,n_elements(fl))])
    endfor
  endelse
  return, res
end
 
 
Please login or register to post comments.