X

NV5 Geospatial Blog

Each month, NV5 Geospatial posts new blog content across a variety of categories. Browse our latest posts below to learn about important geospatial information or use the search bar to find a specific topic or author. Stay informed of the latest blog posts, events, and technologies by joining our email list!



NV5 at ESA’s Living Planet Symposium 2025

NV5 at ESA’s Living Planet Symposium 2025

9/16/2025

We recently presented three cutting-edge research posters at the ESA Living Planet Symposium 2025 in Vienna, showcasing how NV5 technology and the ENVI® Ecosystem support innovation across ocean monitoring, mineral exploration, and disaster management. Explore each topic below and access the full posters to learn... Read More >

Monitor, Measure & Mitigate: Integrated Solutions for Geohazard Risk

Monitor, Measure & Mitigate: Integrated Solutions for Geohazard Risk

9/8/2025

Geohazards such as slope instability, erosion, settlement, or seepage pose ongoing risks to critical infrastructure. Roads, railways, pipelines, and utility corridors are especially vulnerable to these natural and human-influenced processes, which can evolve silently until sudden failure occurs. Traditional ground surveys provide only periodic... Read More >

Geo Sessions 2025: Geospatial Vision Beyond the Map

Geo Sessions 2025: Geospatial Vision Beyond the Map

8/5/2025

Lidar, SAR, and Spectral: Geospatial Innovation on the Horizon Last year, Geo Sessions brought together over 5,300 registrants from 159 countries, with attendees representing education, government agencies, consulting, and top geospatial companies like Esri, NOAA, Airbus, Planet, and USGS. At this year's Geo Sessions, NV5 is... Read More >

Not All Supernovae Are Created Equal: Rethinking the Universe’s Measuring Tools

Not All Supernovae Are Created Equal: Rethinking the Universe’s Measuring Tools

6/3/2025

Rethinking the Reliability of Type 1a Supernovae   How do astronomers measure the universe? It all starts with distance. From gauging the size of a galaxy to calculating how fast the universe is expanding, measuring cosmic distances is essential to understanding everything in the sky. For nearby stars, astronomers use... Read More >

Using LLMs To Research Remote Sensing Software: Helpful, but Incomplete

Using LLMs To Research Remote Sensing Software: Helpful, but Incomplete

5/26/2025

Whether you’re new to remote sensing or a seasoned expert, there is no doubt that large language models (LLMs) like OpenAI’s ChatGPT or Google’s Gemini can be incredibly useful in many aspects of research. From exploring the electromagnetic spectrum to creating object detection models using the latest deep learning... Read More >

1345678910Last
«September 2025»
SunMonTueWedThuFriSat
31123456
78910111213
14151617181920
21222324252627
2829301234
567891011
8257 Rate this article:
5.0

Crop Counting on Mars!?

Zachary Norman

Believe it or not, there is a new market for precision agriculture on our big red neighbor. However, this is not your conventional agriculture analysis, but rather an innovative use of the crop counter tool in ENVI® Crop Science.

Our crop of choice that we will be counting is not alive, but rather lifeless scars on the surface of Mars. Because Mars has such a thin atmosphere, about about 0.6% of Earth's mean sea level atmospheric pressure, smaller meteorites don't necessarily burn up in the atmosphere like they do in our night sky. Instead, the surface or Mars is covered in small, round craters which present ideal objects to find with the crop counter tool. These craters range in size from a few meters in diameters to kilometers in size. For this case, I'm focusing on caters that are about 40-50 meters in diameter.


Step One: Getting the Data

The coolest thing about all of the international space missions is that most of the data collected is easy to find and freely available. For Mars, I actually decided to use a DEM (Digital Elevation Model) that was derived from stereo pairs with the HiRISE (High Resolution Imaging Science Experiment) sensor which is on board the Mars Reconnaissance Orbiter. The HiRISE sensor takes images with up to .3 meter spatial resolution, which allows for lots of detail in the images that are captured. The resulting DEM I used had .99 meters per pixel for spatial resolution. The exact DEM I decided to go with can be found here.

Here is a screenshot of a portion of the image that I used to count craters:

 

I chose this image because it had lots of uniform, round craters. After exploring the craters a bit, I decided to look for craters between 35 and 45 meters in size. Before I could count the craters, I first needed to figure out how I wanted to count them.


Step Two: Preprocessing to get the Data Analysis Ready

For the crop counter, the best way to get accurate results is to preprocess your data and do some thresholding. The first reason for this is that thresholding helps prevent false positives from being counted. Secondly, thresholding drastically increases the speed for finding crop centers. This speed increase is because, when pixels are Nan's, the crop counter skips those pixels and decreases processing time. For crater counting, this preprocessing step just becomes a matter of how to get the craters to pop out of the image.

 

After some thinking, I decided to isolate the crater pits themselves I would use some smoothing, band math, and then thresholding. Here are the exact steps I took to count craters:

1) Smooth the data with a kernel that is the twice the size as the largest crater size we are looking for.

The kernel size for smoothing the data was 91 because we were looking for craters between 35 and 45 meters in diameter. Below you can see the smoothed DEM with a similar color table as above:

2) Take the difference between the smoothed data set and the actual DEM. 

With the smoothed DEM, the crater features we are looking for should be pretty much erased. This means that taking the difference between our smoothed image and our original image will return the approximate crater depth. Because the crop counting tool works with bright images we can then use the crater depth image with the plant counter after one more step is applied. Below you will see the the difference between the DEM and the smoothed image. The green areas have a higher value (height in meters) and the red areas have a lower value.

3) Threshold our crater depth image

This step is very important to reduce false positives for counting craters because our difference image is quite noisy in some places. This step eliminates smaller craters and noise in our image by saying the crater depth needs to be greater than 'x' meters. I used .75 meters for this step which really isolates the craters I was looking for. To illustrate how this helps isolate the craters we are looking for, you can see the image below. This screenshot is of the original DEM with the image difference shown after a threshold has been applied. At this point you can see that we have isolated most of the craters with a few spots of noise here and there.

 

Step Three: Using the Crop Counter!

Now that we have preprocessed our data and have a great image to count craters in, it's time to use the crop counter. Here are the setting I used in the crop counter to find the crater locations:

CropCountTask = ENVITask('AgCropCount')
CropCountTask.INPUT_RASTER = ThresholdRaster
CropCountTask.WIDTH_IN_METERS = 0
CropCountTask.PERCENT_OVERLAP = .01
CropCountTask.SMOOTH_DATA = 1
CropCountTask.SEARCH_WIDTH = [35,45,1]
CropCountTask.MAX_TILE_SIZE = [400,400]

 

After running the task, here is what our results look like. This image is a grayscale version of the DEM with the crop locations shown as cyan circles.

As you can see, the crop counting tool does a pretty good job of finding the actual crater locations!

Please login or register to post comments.