X

NV5 Geospatial Blog

Each month, NV5 Geospatial posts new blog content across a variety of categories. Browse our latest posts below to learn about important geospatial information or use the search bar to find a specific topic or author. Stay informed of the latest blog posts, events, and technologies by joining our email list!



Monitor, Measure & Mitigate: Integrated Solutions for Geohazard Risk

Monitor, Measure & Mitigate: Integrated Solutions for Geohazard Risk

9/8/2025

Geohazards such as slope instability, erosion, settlement, or seepage pose ongoing risks to critical infrastructure. Roads, railways, pipelines, and utility corridors are especially vulnerable to these natural and human-influenced processes, which can evolve silently until sudden failure occurs. Traditional ground surveys provide only periodic... Read More >

Geo Sessions 2025: Geospatial Vision Beyond the Map

Geo Sessions 2025: Geospatial Vision Beyond the Map

8/5/2025

Lidar, SAR, and Spectral: Geospatial Innovation on the Horizon Last year, Geo Sessions brought together over 5,300 registrants from 159 countries, with attendees representing education, government agencies, consulting, and top geospatial companies like Esri, NOAA, Airbus, Planet, and USGS. At this year's Geo Sessions, NV5 is... Read More >

Not All Supernovae Are Created Equal: Rethinking the Universe’s Measuring Tools

Not All Supernovae Are Created Equal: Rethinking the Universe’s Measuring Tools

6/3/2025

Rethinking the Reliability of Type 1a Supernovae   How do astronomers measure the universe? It all starts with distance. From gauging the size of a galaxy to calculating how fast the universe is expanding, measuring cosmic distances is essential to understanding everything in the sky. For nearby stars, astronomers use... Read More >

Using LLMs To Research Remote Sensing Software: Helpful, but Incomplete

Using LLMs To Research Remote Sensing Software: Helpful, but Incomplete

5/26/2025

Whether you’re new to remote sensing or a seasoned expert, there is no doubt that large language models (LLMs) like OpenAI’s ChatGPT or Google’s Gemini can be incredibly useful in many aspects of research. From exploring the electromagnetic spectrum to creating object detection models using the latest deep learning... Read More >

From Image to Insight: How GEOINT Automation Is Changing the Speed of Decision-Making

From Image to Insight: How GEOINT Automation Is Changing the Speed of Decision-Making

4/28/2025

When every second counts, the ability to process geospatial data rapidly and accurately isn’t just helpful, it’s critical. Geospatial Intelligence (GEOINT) has always played a pivotal role in defense, security, and disaster response. But in high-tempo operations, traditional workflows are no longer fast enough. Analysts are... Read More >

1345678910Last
«September 2025»
SunMonTueWedThuFriSat
31123456
78910111213
14151617181920
21222324252627
2829301234
567891011
26785 Rate this article:
2.7

Landsat 8 Sensor Improvements Benefit to GEOINT

Anonym

People following the Landsat Data Continuity Mission (LDCM) know that NASA handed the controls over to the USGS on May 30, 2013 and Landsat 8 was born. Landsat 8 builds on a 40+ year heritage of earth resources remote sensing by providing free access to multispectral imagery on a global scale. Landsat imagery has long been used in Defense and Intelligence circles as a valuable source of GEOINT to monitor land cover change, assess agricultural yields, and as a visualization backdrop for training and battlefield simulations.

New sensors on Landsat 8, the Operational Land Imager (OLI) and the Thermal Infrared Sensor (TIRS), provide significant improvements over the Thematic Mapper (TM) and Enhanced Thematic Mapper (ETM+) instruments on previous Landsat missions.

This post will explore a few ways these improvements could lead to greater adoption of Landsat data in geospatial intelligence operations for defense and military. The Landsat 8 OLI carries two new spectral bands. The first is a deep blue channel in the visible portion of the spectrum. Information collected in this band is useful for characterizing coastal water and atmospheric aerosols. From a Defense and Intelligence perspective, this band could help to produce more accurate near shore water depth assessments; a key component to maritime mission planning. NV5 Defense & Intelligence

The second new band on the OLI covers a known water absorption feature in the shortwave infrared region of the spectrum. This band is strategically positioned to detect the presence of cirrus clouds. This band is used as an input to a new Quality Assurance overlay that is included with each Landsat 8 product. Together they indicate the presence of clouds, water and snow. These data could enable more accurate change detection results as clouds are often responsible for false alarms when conducting reflectance-based analysis between dates. Intelligence organizations depend on accurate, global scale, change detection to assess whether their foundation data (i.e., base maps) are current.

The last improvement I'll mention is the increased signal-to-noise ratio achieved by moving from a whisk-broom to a push-broom sensor design. The push-broom design essentially allows Landsat 8 to get a longer look at the ground and increases the sensitivity of the radiance data collected. The improved signal-to-noise may slightly increase what is visually interpretable in the imagery but has larger implications when it comes to quantitative methods such as vegetation analysis, land cover classification, and sub-pixel material classification. The increased radiometric sensitivity may move Defense and Intelligence analysts to select Landsat 8 over higher spatial resolution assets to: delineate cover and concealment areas (e.g., dense vegetation), map the extent of water inundation or to perform a broad area search for manmade objects that are out of place.

What do you think? Will these improvements lead to new or more accurate applications in the Defense and Intelligence sector?

Please login or register to post comments.