X

NV5 Geospatial Blog

Each month, NV5 Geospatial posts new blog content across a variety of categories. Browse our latest posts below to learn about important geospatial information or use the search bar to find a specific topic or author. Stay informed of the latest blog posts, events, and technologies by joining our email list!



Deploy, Share, Repeat: AI Meets the Analytics Repository

Deploy, Share, Repeat: AI Meets the Analytics Repository

10/13/2025

The upcoming release of ENVI® Deep Learning 4.0 makes it easier than ever to import, deploy, and share AI models, including industry-standard ONNX models, using the integrated Analytics Repository. Whether you're building deep learning models in PyTorch, TensorFlow, or using ENVI’s native model creation tools, ENVI... Read More >

Blazing a trail: SaraniaSat-led Team Shapes the Future of Space-Based Analytics

Blazing a trail: SaraniaSat-led Team Shapes the Future of Space-Based Analytics

10/13/2025

On July 24, 2025, a unique international partnership of SaraniaSat, NV5 Geospatial Software, BruhnBruhn Innovation (BBI), Netnod, and Hewlett Packard Enterprise (HPE) achieved something unprecedented: a true demonstration of cloud-native computing onboard the International Space Station (ISS) (Fig. 1). Figure 1. Hewlett... Read More >

NV5 at ESA’s Living Planet Symposium 2025

NV5 at ESA’s Living Planet Symposium 2025

9/16/2025

We recently presented three cutting-edge research posters at the ESA Living Planet Symposium 2025 in Vienna, showcasing how NV5 technology and the ENVI® Ecosystem support innovation across ocean monitoring, mineral exploration, and disaster management. Explore each topic below and access the full posters to learn... Read More >

Monitor, Measure & Mitigate: Integrated Solutions for Geohazard Risk

Monitor, Measure & Mitigate: Integrated Solutions for Geohazard Risk

9/8/2025

Geohazards such as slope instability, erosion, settlement, or seepage pose ongoing risks to critical infrastructure. Roads, railways, pipelines, and utility corridors are especially vulnerable to these natural and human-influenced processes, which can evolve silently until sudden failure occurs. Traditional ground surveys provide only periodic... Read More >

Geo Sessions 2025: Geospatial Vision Beyond the Map

Geo Sessions 2025: Geospatial Vision Beyond the Map

8/5/2025

Lidar, SAR, and Spectral: Geospatial Innovation on the Horizon Last year, Geo Sessions brought together over 5,300 registrants from 159 countries, with attendees representing education, government agencies, consulting, and top geospatial companies like Esri, NOAA, Airbus, Planet, and USGS. At this year's Geo Sessions, NV5 is... Read More >

1345678910Last
«October 2025»
SunMonTueWedThuFriSat
2829301234
567891011
12131415161718
19202122232425
2627282930311
2345678
14942 Rate this article:
No rating

Rapid Cloud Masking for NPP VIIRS Imagery

Anonym

Here in NV5 (formerly Exelis VIS) Tech Support, we are often asked, “How do I remove the clouds from my imagery?”

Unfortunately, when working with optical imagery, it is usually not possible to recover accurate information for the land surface under clouds. Opaque clouds block light both from reaching the surface (i.e., shadows), and also from being reflected back to the sensor. Consequently, there simply is insufficient signal at the sensor for cloud covered areas. Even the more translucent cirrus clouds interfere with the signal of reflected light from the surface in a way that makes it difficult to analyze or interpret optical imagery in these areas.

One way to approach this problem is to create a mask of the cloud covered areas, and leave those areas out of any image processing or interpretation performed on the optical data.  In fact, official cloud mask data products are generated from some optical sensor data (e.g., MODIS). One of the newer optical sensors for which cloud mask products are available is the Visible Infrared Imaging Radidometer Suite (VIIRS) sensor.  VIIRS data products are distributed by NOAA’s Comprehensive Large Array-Data Stewardship System.  The VIIRS Cloud Mask (VCM) Intermediate Products are generated using relatively sophisticated algorithms, which not only identify cloudy and clear areas, but also indicate a level of confidence in that assessment. There are a few down sides to the VIIRS cloud mask products. The spatial resolution does not match the highest resolution available for VIIRS data. Moreover, it can be challenging to identify the correct cloud mask product that corresponds to a particular VIIRS dataset. 

Noting these challenges, NV5’s own Mark Piper has adapted an algorithm developed for Landsat 7 ETM+ data to provide a simpler, though less informative and robust, alternative to the VIIRS Cloud Mask (VCM) Intermediate Product.  The advantage of this algorithm is that can be applied to a VIIRS Imagery EDR to conveniently quantify the fractional cloud cover in the scene or in a spatial subset. Dr. Piper will be presenting this work in December at the 2012 American Geophysical Union Fall Meeting.

Cloud Mask Comparison

Left: A color composite of VIIRS data over Hawaii. Right: A comparison of the official VIIRS Cloud Mask (VCM) Intermediate Product and a cloud mask generated using Dr. Piper’s algorithm.  Areas where both masks find clouds are shown in white. Areas where both masks do not find clouds are shown in gray. Areas where only the official product finds clouds are shown in cyan. Areas where only Dr. Piper’s rapid algorithm finds clouds are shown in red. (The red striping has to do with the bowtie effect.)

Please login or register to post comments.