X

NV5 Geospatial Blog

Each month, NV5 Geospatial posts new blog content across a variety of categories. Browse our latest posts below to learn about important geospatial information or use the search bar to find a specific topic or author. Stay informed of the latest blog posts, events, and technologies by joining our email list!



Monitor, Measure & Mitigate: Integrated Solutions for Geohazard Risk

Monitor, Measure & Mitigate: Integrated Solutions for Geohazard Risk

9/8/2025

Geohazards such as slope instability, erosion, settlement, or seepage pose ongoing risks to critical infrastructure. Roads, railways, pipelines, and utility corridors are especially vulnerable to these natural and human-influenced processes, which can evolve silently until sudden failure occurs. Traditional ground surveys provide only periodic... Read More >

Geo Sessions 2025: Geospatial Vision Beyond the Map

Geo Sessions 2025: Geospatial Vision Beyond the Map

8/5/2025

Lidar, SAR, and Spectral: Geospatial Innovation on the Horizon Last year, Geo Sessions brought together over 5,300 registrants from 159 countries, with attendees representing education, government agencies, consulting, and top geospatial companies like Esri, NOAA, Airbus, Planet, and USGS. At this year's Geo Sessions, NV5 is... Read More >

Not All Supernovae Are Created Equal: Rethinking the Universe’s Measuring Tools

Not All Supernovae Are Created Equal: Rethinking the Universe’s Measuring Tools

6/3/2025

Rethinking the Reliability of Type 1a Supernovae   How do astronomers measure the universe? It all starts with distance. From gauging the size of a galaxy to calculating how fast the universe is expanding, measuring cosmic distances is essential to understanding everything in the sky. For nearby stars, astronomers use... Read More >

Using LLMs To Research Remote Sensing Software: Helpful, but Incomplete

Using LLMs To Research Remote Sensing Software: Helpful, but Incomplete

5/26/2025

Whether you’re new to remote sensing or a seasoned expert, there is no doubt that large language models (LLMs) like OpenAI’s ChatGPT or Google’s Gemini can be incredibly useful in many aspects of research. From exploring the electromagnetic spectrum to creating object detection models using the latest deep learning... Read More >

From Image to Insight: How GEOINT Automation Is Changing the Speed of Decision-Making

From Image to Insight: How GEOINT Automation Is Changing the Speed of Decision-Making

4/28/2025

When every second counts, the ability to process geospatial data rapidly and accurately isn’t just helpful, it’s critical. Geospatial Intelligence (GEOINT) has always played a pivotal role in defense, security, and disaster response. But in high-tempo operations, traditional workflows are no longer fast enough. Analysts are... Read More >

1345678910Last
«September 2025»
SunMonTueWedThuFriSat
31123456
78910111213
14151617181920
21222324252627
2829301234
567891011
32661 Rate this article:
4.0

Removing the Complexity of Deep Learning

Jason Wolfe

The last few years have seen a marked increase in the use of deep learning within the remote sensing community. As this emerging technology has started to catch on, professionals in the geospatial industry often ask, "What is deep learning and how can I use it for my application?" This article demystifies some of the unknowns around deep learning while showing examples of how we have applied it to remote sensing imagery at NV5 Geospatial.

(Left) Orthophoto of a neighborhood in Port-au-Prince, Haiti after the Janurary 2010 earthquake;
(Right) Class activation map created in ENVI, showing areas of rubble identified from a deep-learning model.

The concept of deep learning has been around for many years, but only recently have people begun to explore its full potential for solving geospatial problems with imagery. When we consider how deep learning applies to images, we often think of object recognition such as the ability to identify faces or vehicles from digital photographs. While that is still a popular use, there is a growing need to identify and categorize objects over a large geographic area. An internet search for "deep learning in remote sensing" reveals some of the applications where it has been used to date—namely, image classification, vegetation mapping, and urban planning. So what is deep learning and why is there so much hype around it?

Deep learning is really just a sophisticated form of machine learning that enables a system to automatically discover representations in data. It can continually improve predictions on its own without extensive guidance. It learns patterns by progressing through multiple layers in a neural network in order to draw conclusions, similar to how the brain processes information. When applied to remote sensing imagery, it can be used to find features such as vehicles, utility structures, or road markings. Over a larger scale, it can be used to find specific land-use patterns, road networks, and clouds in optical imagery. The result is a special type of classification image called a class activation map that indicates the probability of each pixel matching a given feature. The following figure shows an example that identifies vehicles in a high-resolution orthophoto.

Compared to traditional supervised classification methods such as Support Vector Machine (SVM), deep learning can extract more robust representations of features, which improves classification accuracy. Deep-learning algorithms are well-suited to extract features from a complex background, regardless of their shape, color, size, and other attributes.

As with any classification problem that involves training a neural network, users must provide samples of the features they are interested in—a process referred to as labeling. As the amount of data from small satellites and drones continues to grow exponentially over time, providing labels of features can become costly and time-consuming. Once the labels have been created, how are they input to a deep-learning model so that it can be trained to identify the same features in other images? Again, an internet search on this subject reveals a steep learning curve with lots of complex diagrams and unfamiliar terms. Researchers sometimes develop their own algorithms and architectures, but mostly they use open-source libraries for deep learning, which involves extensive programming in Python or C++.

The ENVI Deep Learning module, available in May of 2019, is designed specifically to overcome these limitations and make deep learning more widely available to the mainstream remote sensing community. It leverages the widely used and proven TensorFlow™ deep-learning technology without requiring users to write a single line of API code. Instead, a simple user interface guides users through the process of creating a labeled dataset, training a model, and creating a class activation map of the result:

Here is an example of how deep learning can be used in remote sensing: Suppose you want to identify all of the rows of agricultural crops in an image. In many areas of the world, crops are planted along curved rows. This makes it difficult to automatically extract the rows using traditional classification methods. A deep-learning model would be perfect for this task. However, labeling rows by hand could take hours just to provide training samples for the model. To show how ENVI's analytics can be used to solve this problem, two small spatial subsets were selected for training from an image of an agricultural field that was 4200 x 6400 pixels in size. In each subset, the ENVI Region of Interest (ROI) Tool was used to draw polylines along the crop rows. This labeling process only took a few minutes. The labeled examples were used to train a deep-learning model to identify the remaining crop rows in the full image (shown with blue lines below).

Using only a handful of labeled examples, the model learned to identify all of the crop rows. Training was a one-time process. The trained model can now be applied to other, similar images.

ENVI's preprocessing tools augment the deep-learning process. Preprocessing tools such as calibration, stretching, and color space transformation create consistent data needed for deep-learning models. Spectral classification and target detection tools can be used to create labeled datasets without the need to hand-draw ROIs on images. Some of our engineers experimented with using building footprints from OpenStreetMap® as input to a deep-learning model for rooftop extraction in a large urban scene. The following image shows the resulting class activation map overlaid on an orthophoto:

The Deep Learning module was designed to hide the complexity of convolutional neural networks from image analysts who regularly use ENVI. Yet it allows users who want more control over the training process to fine-tune parameters to achieve the best accuracy. Users can also take advantage of the ENVITask API framework and ENVI Modeler to customize deep-learning workflows. The image-driven insights that ENVI Deep Learning provides will help professionals solve geospatial problems that can't be solved with GIS data alone.

Learn more about ENVI Deep Learning.

Please login or register to post comments.