X

NV5 Geospatial Blog

Each month, NV5 Geospatial posts new blog content across a variety of categories. Browse our latest posts below to learn about important geospatial information or use the search bar to find a specific topic or author. Stay informed of the latest blog posts, events, and technologies by joining our email list!



Deploy, Share, Repeat: AI Meets the Analytics Repository

Deploy, Share, Repeat: AI Meets the Analytics Repository

10/13/2025

The upcoming release of ENVI® Deep Learning 4.0 makes it easier than ever to import, deploy, and share AI models, including industry-standard ONNX models, using the integrated Analytics Repository. Whether you're building deep learning models in PyTorch, TensorFlow, or using ENVI’s native model creation tools, ENVI... Read More >

Blazing a trail: SaraniaSat-led Team Shapes the Future of Space-Based Analytics

Blazing a trail: SaraniaSat-led Team Shapes the Future of Space-Based Analytics

10/13/2025

On July 24, 2025, a unique international partnership of SaraniaSat, NV5 Geospatial Software, BruhnBruhn Innovation (BBI), Netnod, and Hewlett Packard Enterprise (HPE) achieved something unprecedented: a true demonstration of cloud-native computing onboard the International Space Station (ISS) (Fig. 1). Figure 1. Hewlett... Read More >

NV5 at ESA’s Living Planet Symposium 2025

NV5 at ESA’s Living Planet Symposium 2025

9/16/2025

We recently presented three cutting-edge research posters at the ESA Living Planet Symposium 2025 in Vienna, showcasing how NV5 technology and the ENVI® Ecosystem support innovation across ocean monitoring, mineral exploration, and disaster management. Explore each topic below and access the full posters to learn... Read More >

Monitor, Measure & Mitigate: Integrated Solutions for Geohazard Risk

Monitor, Measure & Mitigate: Integrated Solutions for Geohazard Risk

9/8/2025

Geohazards such as slope instability, erosion, settlement, or seepage pose ongoing risks to critical infrastructure. Roads, railways, pipelines, and utility corridors are especially vulnerable to these natural and human-influenced processes, which can evolve silently until sudden failure occurs. Traditional ground surveys provide only periodic... Read More >

Geo Sessions 2025: Geospatial Vision Beyond the Map

Geo Sessions 2025: Geospatial Vision Beyond the Map

8/5/2025

Lidar, SAR, and Spectral: Geospatial Innovation on the Horizon Last year, Geo Sessions brought together over 5,300 registrants from 159 countries, with attendees representing education, government agencies, consulting, and top geospatial companies like Esri, NOAA, Airbus, Planet, and USGS. At this year's Geo Sessions, NV5 is... Read More >

1345678910Last
«October 2025»
SunMonTueWedThuFriSat
2829301234
567891011
12131415161718
19202122232425
2627282930311
2345678
30527 Rate this article:
4.0

Spatial Data Reduction and Pixel Purity Index

The Spectral Hourglass Series: Part 4

Anonym

This blog continues our discussion on the Spectral Hourglass Workflow available within ENVI®.

After reducing the number of spectral bands our next step involves reducing the data spatially so that we only focus on pixels that are pure. We want our workflow to be as efficient as possible and ignoring pixels which do not contain pure endmembers will aide this effort. In order to accomplish this task, we can use ENVI to create a Pixel Purity Index (PPI) Image.

The Pixel Purity Image means this – each pixel value corresponds to the number of times that pixel was recorded as extreme and further, the general purpose of the PPI image is to associate spatial information (pixel locations) with the probability that each pixel represents a pure image endmember.

 

The ‘DN’ (outlined in the red box) that you see represents a specific pixel value, and the ‘Npts’ (blue box) values that you see represent the total number of times that specific pixel value was identified/found in the image. A high PPI value means it has been an endmember in more iterations.

The goal of this step is to identify pixel values that did not occur with extreme frequency, because the endmembers (pure pixels) will most likely only be represented by a few pixels. As is the nature of a typical hyperspectral scene you will have mainly mixed pixels, but there will be a small number of endmembers (pure pixels) that can be extracted to map their frequency in the image. Now, this is a general rule of thumb and will vary greatly depending on the quality of HSI data you receive, along with the general area where the data is collected from. For instance, if you are in a mineral rich area with large outcroppings of pure minerals, then you would most likely have a large frequency of endmembers as there is not much mixing of minerals in that region.

Choosing a threshold allows you to choose the point at which you deem something to truly be spectrally unique or not. The smaller the threshold value you choose the fewer pixels will be identified as being pure (i.e., pixels will have to be more pure in order to project onto the tail of the histogram).

An appropriate image threshold must be determined empirically. This requires some trial and error. From the histogram above, you can see that the PPI image has a minimum value of 0 (pixels that were never identified as pure) and a maximum value of 61725 (pixels that were identified 61725 times during the PPI iterations). You can select a starting point for the threshold value by selecting a value near the break in slope (maximum curvature) of the input histogram, and in our case this would be around 1000.

Using that value of 1000 we can apply a band threshold to the PPI image that will now only include pixels in the image with high pixel values and low frequency; in other words we will only be left with spectrally pure endmembers. Determining the exact PPI threshold value is made very easy with the new ROI Tool. When selecting a threshold the ENVI display window will dynamically update to colorize the pixels which contain the range of values stipulated in the Choose Threshold Parameters dialog window (the red pixels in the attached figure). The ROI Tool dialog also updates with area information to detail how many pixels are contained within this newly created ROI. Due to the nature of HSI data and pure endmembers we know that the total number of pixels contained in the ROI should be no more than a few hundred pixels. Using a threshold value of 1400 we will be left with only 534 pixels, a reasonable number in our case.

Once a threshold has been applied to the PPI image the next step will be to extract endmembers via the n-D Visualizer tool available in ENVI.

Read The Spectral Hourglass Series: Part 5, Working in n-Dimensional Space

Read The Spectral Hourglass Series: Part 3, Hyperspectral Data Reduction