X

NV5 Geospatial Blog

Each month, NV5 Geospatial posts new blog content across a variety of categories. Browse our latest posts below to learn about important geospatial information or use the search bar to find a specific topic or author. Stay informed of the latest blog posts, events, and technologies by joining our email list!



Not All Supernovae Are Created Equal: Rethinking the Universe’s Measuring Tools

Not All Supernovae Are Created Equal: Rethinking the Universe’s Measuring Tools

6/3/2025

Rethinking the Reliability of Type 1a Supernovae   How do astronomers measure the universe? It all starts with distance. From gauging the size of a galaxy to calculating how fast the universe is expanding, measuring cosmic distances is essential to understanding everything in the sky. For nearby stars, astronomers use... Read More >

Using LLMs To Research Remote Sensing Software: Helpful, but Incomplete

Using LLMs To Research Remote Sensing Software: Helpful, but Incomplete

5/26/2025

Whether you’re new to remote sensing or a seasoned expert, there is no doubt that large language models (LLMs) like OpenAI’s ChatGPT or Google’s Gemini can be incredibly useful in many aspects of research. From exploring the electromagnetic spectrum to creating object detection models using the latest deep learning... Read More >

From Image to Insight: How GEOINT Automation Is Changing the Speed of Decision-Making

From Image to Insight: How GEOINT Automation Is Changing the Speed of Decision-Making

4/28/2025

When every second counts, the ability to process geospatial data rapidly and accurately isn’t just helpful, it’s critical. Geospatial Intelligence (GEOINT) has always played a pivotal role in defense, security, and disaster response. But in high-tempo operations, traditional workflows are no longer fast enough. Analysts are... Read More >

Thermal Infrared Echoes: Illuminating the Last Gasp of a Dying Star

Thermal Infrared Echoes: Illuminating the Last Gasp of a Dying Star

4/24/2025

This blog was written by Eli Dwek, Emeritus, NASA Goddard Space Flight Center, Greenbelt, MD and Research Fellow, Center for Astrophysics, Harvard & Smithsonian, Cambridge, MA. It is the fifth blog in a series showcasing our IDL® Fellows program which supports passionate retired IDL users who may need support to continue their work... Read More >

A New Era of Hyperspectral Imaging with ENVI® and Wyvern’s Open Data Program

A New Era of Hyperspectral Imaging with ENVI® and Wyvern’s Open Data Program

2/25/2025

This blog was written in collaboration with Adam O’Connor from Wyvern.   As hyperspectral imaging (HSI) continues to grow in importance, access to high-quality satellite data is key to unlocking new insights in environmental monitoring, agriculture, forestry, mining, security, energy infrastructure management, and more.... Read More >

1345678910Last
16403 Rate this article:
2.7

Upsampling images with Lanczos kernel

Anonym
Resampling images is a very common operation in IDL, and it can happen both implicitly as well explicitly. Implicit resampling happens with IDLgrImage rendering. When the destination rendering area contains fewer pixels than the original image, then downsampling occurs. When the destination area is larger than the original image, then upsampling occurs. There are many options for upsampling algorithms. The simplest is a pure pixel replication to fill in the gaps. This is useful when there is a need to look closely at the original data. However, if the goal is to look for details in the scene that may be approaching the limits of the image resolution, then a more sophisticated resampling algorithm should be chosen instead. There are a few options that are commonly used. Bilinear interpolation and cubic spline interpolation are both options that are available with the CONGRID function in IDL. Lanczos and Lagrange resampling are two other options that are more computationally intensive. In the code below, I am showing an example comparing the Lanczos resampling kernel with bilinear and pixel replication. Lanczos resampling is often preferred because of its ability to preserve and even enhance local contrast, whereas bilinear tends have a blurring effect.
function lanczos, data
 
  xval = [-3:3:.25]
  lanc3 = 3*sin(!pi*xval)*(sin(!pi*xval/3d)/!pi/!pi/xval/xval)
  lanc3[where(xval eq 0)] = 1
  l2d = lanc3 # lanc3
  ; high resolution version
  msk = fltarr(data.dim*4)
  msk[0:*:4,0:*:4] = data
  hi = convol(msk, l2d, /edge_trunc)
  hi = byte(round(hi>0<255))
  return, hi
end
 
pro upsample_example
  compile_opt idl2,logical_predicate
 
  ; Read the original image data
  f = filepath('moon_landing.png', subdir=['examples','data'])
  data = read_png(f)
  dim = data.dim
 
  window, xsize=dim[0], ysize=dim[1], 0, title='Original full size'
  tv, data
 
  ; Define a zoomed in are on the flag.
  xs = 200
  ys = 165
  dx = 40
  dy = 40
 
  ; display upsampled 4x with pixel replication
  window, xsize=160, ysize=160, 1, title='CONGRID pixel-replication'
  tv, congrid(data[xs:xs+dx-1,ys:ys+dy-1],160,160)
 
  ; display upsampled 4x with bilinear interpretation
  window, xsize=160, ysize=160, 2, title='CONGRID linear'
  tv, congrid(data[xs:xs+dx-1,ys:ys+dy-1],160,160,/interp)
 
  ; display upsampled 4x with Lanczos convolution
  window, xsize=160, ysize=160, 3, title='Lanczos'
  tv, (lanczos(data))[xs*4:xs*4+dx*4-1,ys*4:ys*4+dy*4-1]
end

 

The results are shown here, starting with the original image, then the 4x zoomed area with pixel replication, then the 4x zoomed with bilinear interpolation, and finally the 4x zoomed with Lanczos convolution. The Lanczos convolution has the advantage of retaining good contrast while avoiding looking too pixelated.

   

Please login or register to post comments.