X

NV5 Geospatial Blog

Each month, NV5 Geospatial posts new blog content across a variety of categories. Browse our latest posts below to learn about important geospatial information or use the search bar to find a specific topic or author. Stay informed of the latest blog posts, events, and technologies by joining our email list!



Thermal Infrared Echoes: Illuminating the Last Gasp of a Dying Star

Thermal Infrared Echoes: Illuminating the Last Gasp of a Dying Star

4/24/2025

This blog was written by Eli Dwek, Emeritus, NASA Goddard Space flight Center, Greenbelt, MD and Research Fellow, Center for Astrophysics, Harvard & Smithsonian, Cambridge, MA. It is the fifth blog in a series showcasing our IDL® Fellows program which supports passionate retired IDL users who may need support to continue their work... Read More >

A New Era of Hyperspectral Imaging with ENVI® and Wyvern’s Open Data Program

A New Era of Hyperspectral Imaging with ENVI® and Wyvern’s Open Data Program

2/25/2025

This blog was written in collaboration with Adam O’Connor from Wyvern.   As hyperspectral imaging (HSI) continues to grow in importance, access to high-quality satellite data is key to unlocking new insights in environmental monitoring, agriculture, forestry, mining, security, energy infrastructure management, and more.... Read More >

Ensure Mission Success With the Deployable Tactical Analytics Kit (DTAK)

Ensure Mission Success With the Deployable Tactical Analytics Kit (DTAK)

2/11/2025

In today’s fast-evolving world, operational success hinges on real-time geospatial intelligence and data-driven decisions. Whether it’s responding to natural disasters, securing borders, or executing military operations, having the right tools to integrate and analyze data can mean the difference between success and failure.... Read More >

How the COVID-19 Lockdown Improved Air Quality in Ecuador: A Deep Dive Using Satellite Data and ENVI® Software

How the COVID-19 Lockdown Improved Air Quality in Ecuador: A Deep Dive Using Satellite Data and ENVI® Software

1/21/2025

The COVID-19 pandemic drastically altered daily life, leading to unexpected environmental changes, particularly in air quality. Ecuador, like many other countries, experienced significant shifts in pollutant concentrations due to lockdown measures. In collaboration with Geospace Solutions and Universidad de las Fuerzas Armadas ESPE,... Read More >

Rapid Wildfire Mapping in Los Angeles County

Rapid Wildfire Mapping in Los Angeles County

1/14/2025

On January 8, WorldView-3 shortwave infrared (SWIR) imagery captured the ongoing devastation of the wildfires in Los Angeles County. The data revealed the extent of the burned areas at the time of the capture, offering critical insights for rapid response and recovery. To analyze the affected region, we utilized a random forest... Read More >

1345678910Last
«May 2025»
SunMonTueWedThuFriSat
27282930123
45678910
11121314151617
18192021222324
25262728293031
1234567
16163 Rate this article:
2.7

Upsampling images with Lanczos kernel

Anonym
Resampling images is a very common operation in IDL, and it can happen both implicitly as well explicitly. Implicit resampling happens with IDLgrImage rendering. When the destination rendering area contains fewer pixels than the original image, then downsampling occurs. When the destination area is larger than the original image, then upsampling occurs. There are many options for upsampling algorithms. The simplest is a pure pixel replication to fill in the gaps. This is useful when there is a need to look closely at the original data. However, if the goal is to look for details in the scene that may be approaching the limits of the image resolution, then a more sophisticated resampling algorithm should be chosen instead. There are a few options that are commonly used. Bilinear interpolation and cubic spline interpolation are both options that are available with the CONGRID function in IDL. Lanczos and Lagrange resampling are two other options that are more computationally intensive. In the code below, I am showing an example comparing the Lanczos resampling kernel with bilinear and pixel replication. Lanczos resampling is often preferred because of its ability to preserve and even enhance local contrast, whereas bilinear tends have a blurring effect.
function lanczos, data
 
  xval = [-3:3:.25]
  lanc3 = 3*sin(!pi*xval)*(sin(!pi*xval/3d)/!pi/!pi/xval/xval)
  lanc3[where(xval eq 0)] = 1
  l2d = lanc3 # lanc3
  ; high resolution version
  msk = fltarr(data.dim*4)
  msk[0:*:4,0:*:4] = data
  hi = convol(msk, l2d, /edge_trunc)
  hi = byte(round(hi>0<255))
  return, hi
end
 
pro upsample_example
  compile_opt idl2,logical_predicate
 
  ; Read the original image data
  f = filepath('moon_landing.png', subdir=['examples','data'])
  data = read_png(f)
  dim = data.dim
 
  window, xsize=dim[0], ysize=dim[1], 0, title='Original full size'
  tv, data
 
  ; Define a zoomed in are on the flag.
  xs = 200
  ys = 165
  dx = 40
  dy = 40
 
  ; display upsampled 4x with pixel replication
  window, xsize=160, ysize=160, 1, title='CONGRID pixel-replication'
  tv, congrid(data[xs:xs+dx-1,ys:ys+dy-1],160,160)
 
  ; display upsampled 4x with bilinear interpretation
  window, xsize=160, ysize=160, 2, title='CONGRID linear'
  tv, congrid(data[xs:xs+dx-1,ys:ys+dy-1],160,160,/interp)
 
  ; display upsampled 4x with Lanczos convolution
  window, xsize=160, ysize=160, 3, title='Lanczos'
  tv, (lanczos(data))[xs*4:xs*4+dx*4-1,ys*4:ys*4+dy*4-1]
end

 

The results are shown here, starting with the original image, then the 4x zoomed area with pixel replication, then the 4x zoomed with bilinear interpolation, and finally the 4x zoomed with Lanczos convolution. The Lanczos convolution has the advantage of retaining good contrast while avoiding looking too pixelated.

   

Please login or register to post comments.