X

NV5 Geospatial Blog

Each month, NV5 Geospatial posts new blog content across a variety of categories. Browse our latest posts below to learn about important geospatial information or use the search bar to find a specific topic or author. Stay informed of the latest blog posts, events, and technologies by joining our email list!



Not All Supernovae Are Created Equal: Rethinking the Universe’s Measuring Tools

Not All Supernovae Are Created Equal: Rethinking the Universe’s Measuring Tools

6/3/2025

Rethinking the Reliability of Type 1a Supernovae   How do astronomers measure the universe? It all starts with distance. From gauging the size of a galaxy to calculating how fast the universe is expanding, measuring cosmic distances is essential to understanding everything in the sky. For nearby stars, astronomers use... Read More >

Using LLMs To Research Remote Sensing Software: Helpful, but Incomplete

Using LLMs To Research Remote Sensing Software: Helpful, but Incomplete

5/26/2025

Whether you’re new to remote sensing or a seasoned expert, there is no doubt that large language models (LLMs) like OpenAI’s ChatGPT or Google’s Gemini can be incredibly useful in many aspects of research. From exploring the electromagnetic spectrum to creating object detection models using the latest deep learning... Read More >

From Image to Insight: How GEOINT Automation Is Changing the Speed of Decision-Making

From Image to Insight: How GEOINT Automation Is Changing the Speed of Decision-Making

4/28/2025

When every second counts, the ability to process geospatial data rapidly and accurately isn’t just helpful, it’s critical. Geospatial Intelligence (GEOINT) has always played a pivotal role in defense, security, and disaster response. But in high-tempo operations, traditional workflows are no longer fast enough. Analysts are... Read More >

Thermal Infrared Echoes: Illuminating the Last Gasp of a Dying Star

Thermal Infrared Echoes: Illuminating the Last Gasp of a Dying Star

4/24/2025

This blog was written by Eli Dwek, Emeritus, NASA Goddard Space Flight Center, Greenbelt, MD and Research Fellow, Center for Astrophysics, Harvard & Smithsonian, Cambridge, MA. It is the fifth blog in a series showcasing our IDL® Fellows program which supports passionate retired IDL users who may need support to continue their work... Read More >

A New Era of Hyperspectral Imaging with ENVI® and Wyvern’s Open Data Program

A New Era of Hyperspectral Imaging with ENVI® and Wyvern’s Open Data Program

2/25/2025

This blog was written in collaboration with Adam O’Connor from Wyvern.   As hyperspectral imaging (HSI) continues to grow in importance, access to high-quality satellite data is key to unlocking new insights in environmental monitoring, agriculture, forestry, mining, security, energy infrastructure management, and more.... Read More >

1345678910Last
«July 2025»
SunMonTueWedThuFriSat
293012345
6789101112
13141516171819
20212223242526
272829303112
3456789
25515 Rate this article:
5.0

What to Ex-Spectra When You're Reflecting

Exploring Absorption Features

Anonym

Reflectance spectra are at the core of spectral analysis, so discussing absorption features (spectral lines) requires a firm understanding of what spectra are and how they work in remote sensing.

A satellite sensor records the intensity of light at various wavelengths as received through the atmosphere and as altered by sensor distortions. An accurate pixel spectrum represents the reflectance of light from a pixel without sensor distortions, without any illumination variation from the solar irradiation curve, and without any atmospheric absorption. This process is completed through radiometric calibration and atmospheric correction. The radiometric calibration uses coefficients delivered in the metadata from the sensor to translate scaled sensor response data numbers to top-of-atmosphere spectra with physical units while addressing any systematic errors from the sensor. Atmospheric correction will use physical and numerical models to account for and remove the solar irradiation curve variations and atmospheric absorptions such as those caused by water vapor and CO2. These corrections deliver a reflectance spectrum that closely matches the “true” spectra that would be seen if the illumination were even across all wavelengths and if the light measured by the spectrometer did not have to travel through the atmosphere. Here is a figure showing a spectral profile of raw Landsat 8 data, over a vegetation pixel:

 

This figure shows a spectral profile of radiometrically calibrated Landsat 8 data, over the same pixel:

 

This figure shows a spectral profile of atmospherically corrected (using QUAC) Landsat 8 data, over the same pixel. (Note that the scale factor is different for this profile, mainly look at the differences in the shape of the curve):

 

The ability to analyze the reflectance spectrum of a pixel found in a scene has proved incredibly helpful for classifying those pixels, finding materials and targets of interest, and even for discovering materials previously unknown in the area. Analyzing spectra is incredibly useful in most fields of remote sensing, but specifically the mining industry and the defense and intelligence industry. Reflectance spectra can help pinpoint the precise location and abundance of a certain material, or with data that has high spatial resolution, maybe even specific elements that comprise a material. It is clear that a mining company would make great use of a map detailing the relative abundance of ores or indicator minerals found in a scene.

The process of analyzing spectra for absorption features to detect certain elements and compounds can be traced back to the groundbreaking work done by the astronomer Joseph von Fraunhofer at the turn of the 19th century. To condense a massively important and cutting-edge breakthrough in science into a blog post is difficult, but here goes. Fraunhofer was able to identify that viewing light through specific materials caused light at specific wavelengths to be absorbed depending on the chemical makeup of the material. This is due to the fact that photons at particular frequencies are absorbed by the chemical compound and thus show a “dip” in the spectrum, indicating the presence of that specific chemical compound. (The fact that the photons absorb this light means that there is a reduction in intensity, hence the “dip” in the spectra.) This would result in a spectrum of light showing some gaps, and these gaps can help indicate the chemical components of the object or pixel being analyzed.

 

Image courtesy of: The CU Boulder Physics Department

 

All chemicals have specific absorption features, and identifying these “dips” in a pixel from a satellite sensor can give a user high confidence of the presence of that compound.

Singling out absorption features in reflectance spectra allows you to quickly ascertain the potential abundance of certain materials. This is best accomplished by comparing an example spectrum, usually a pixel found in your scene, against a spectral library containing actual measured spectra for a wide array of substances. A spectral library aimed at identifying the presence of heavy metals will contain different spectra than a library geared at identifying various vegetation types. This gets to a major point, as determining the abundance of certain materials in your scene will be wholly limited by the quality and diversity of your spectral library. There are many outlets available online to download spectral libraries through reputable sources. ENVI offers a wide array of tools intended to analyze spectra that match example spectra to materials in a spectral library. The THOR Material Identification workflow is a wizard that allows a user to simply take an example spectrum from a pixel found in your scene and see what spectrum from the spectral library, if any, match that example pixel. 

The following figure is a screen capture of the THOR Material Identification Workflow:

 

The Material Identification process is designed to quickly ascertain the potential abundance of certain materials in your scene based on their spectral features, reduces a significant amount of groundwork, and provides precise locations mapped out indicating a high likelihood of certain materials.

Please login or register to post comments.