X

NV5 Geospatial Blog

Each month, NV5 Geospatial posts new blog content across a variety of categories. Browse our latest posts below to learn about important geospatial information or use the search bar to find a specific topic or author. Stay informed of the latest blog posts, events, and technologies by joining our email list!



Comparing Amplitude and Coherence Time Series With ICEYE US GTR Data and ENVI SARscape

Comparing Amplitude and Coherence Time Series With ICEYE US GTR Data and ENVI SARscape

12/3/2025

Large commercial SAR satellite constellations have opened a new era for persistent Earth monitoring, giving analysts the ability to move beyond simple two-image comparisons into robust time series analysis. By acquiring SAR data with near-identical geometry every 24 hours, Ground Track Repeat (GTR) missions minimize geometric decorrelation,... Read More >

Empowering D&I Analysts to Maximize the Value of SAR

Empowering D&I Analysts to Maximize the Value of SAR

12/1/2025

Defense and intelligence (D&I) analysts rely on high-resolution imagery with frequent revisit times to effectively monitor operational areas. While optical imagery is valuable, it faces limitations from cloud cover, smoke, and in some cases, infrequent revisit times. These challenges can hinder timely and accurate data collection and... Read More >

Easily Share Workflows With the Analytics Repository

Easily Share Workflows With the Analytics Repository

10/27/2025

With the recent release of ENVI® 6.2 and the Analytics Repository, it’s now easier than ever to create and share image processing workflows across your organization. With that in mind, we wrote this blog to: Introduce the Analytics Repository Describe how you can use ENVI’s interactive workflows to... Read More >

Deploy, Share, Repeat: AI Meets the Analytics Repository

Deploy, Share, Repeat: AI Meets the Analytics Repository

10/13/2025

The upcoming release of ENVI® Deep Learning 4.0 makes it easier than ever to import, deploy, and share AI models, including industry-standard ONNX models, using the integrated Analytics Repository. Whether you're building deep learning models in PyTorch, TensorFlow, or using ENVI’s native model creation tools, ENVI... Read More >

Blazing a trail: SaraniaSat-led Team Shapes the Future of Space-Based Analytics

Blazing a trail: SaraniaSat-led Team Shapes the Future of Space-Based Analytics

10/13/2025

On July 24, 2025, a unique international partnership of SaraniaSat, NV5 Geospatial Software, BruhnBruhn Innovation (BBI), Netnod, and Hewlett Packard Enterprise (HPE) achieved something unprecedented: a true demonstration of cloud-native computing onboard the International Space Station (ISS) (Fig. 1). Figure 1. Hewlett... Read More >

1345678910Last
21550 Rate this article:
4.0

Multispectral vs. Hyperspectral Imaging – Enhancing Vegetation Mapping Accuracy

Nicolai Holzer

Data from multispectral satellite constellations like Landsat and SPOT have long been utilized for land use mapping and vegetation classification. Sentinel-2 builds on this legacy, providing similar moderate-resolution data acquired in broad spectral bands that cover visible, near infrared, and short-wave infrared wavelengths. Even though the MultiSpectral Instrument (MSI) payload of Sentinel-2 is tuned for vegetation mapping by sampling 13 well positioned spectral bands at spatial resolutions of 10m, 20m and 60m, in most cases hyperspectral imagery offers improved accuracy for this purpose. 

What is Hyperspectral Imaging?

While multispectral sensors capture images in a limited number of broad spectral bands, hyperspectral sensors acquire images with hundreds of narrow and contiguous spectral bands, ideally covering the entire electromagnetic spectrum. The increased spectral resolution of hyperspectral imagery enables the extraction of distinct spectral characteristics that may not be visible in multispectral images.

The additional spectral information provided by hyperspectral imaging allows for a deeper analysis of land surface features. It facilitates the identification and differentiation of similar objects, making it easier to classify vegetation types accurately.

A recent study by Jarocińska et al. published in Nature Scientific Reports (2023) investigated the extent to which additional spectral information improves the accuracy of identifying vegetation habitats with similar spectral properties. The study was conducted in five areas for non-forest EU Natura 2000 habitats and focused on four types of habitats: meadows, grasslands, heaths, and mires. (Figure 1).

 

Fig. 1: Images of analyzed vegetation ecosystems in Poland with habitat type and Natura 2000 code.

The study utilized multispectral data from the Sentinel-2 satellite and hyperspectral data from airborne HySpex sensors. Image preprocessing employed advanced spectral analytics using ENVI® software. ENVI is the industry standard for processing and analyzing hyperspectral data with the ability to capture the subtle spectral signatures in hyperspectral data. To ensure a fair comparison, the hyperspectral imagery was down-sampled to match the spatial resolution of Sentinel-2 (10m).

The results of the study demonstrated that hyperspectral data generally achieved higher classification accuracies compared to multispectral Sentinel-2 imagery, regardless of the habitat type. The F1 accuracy, on average, was 0.14 higher when using hyperspectral data (Figure 2). The authors conclude that the difference in accuracy was not constant, as it varied by area and habitat characterization. However, the authors emphasized that hyperspectral imagery was crucial for accurately mapping salt meadows (1340), Molinia meadows (6410), and lowland hay meadows (6510).

Conclusion

The study highlights the significant advantages of hyperspectral imaging over multispectral imaging for vegetation mapping. The increased spectral resolution enables more precise identification and differentiation of land surface features, ultimately improving classification accuracy.

Fig. 2: Distribution of F1 accuracy values for each Natura 2000 habitat – comparing hyperspectral from airborne HySpex (HS) sensor (black) vs. multispectral from satellite Sentinel-2 (S2) sensor (red).

References

Jarocińska, A., Kopeć, D., Niedzielko, J. et al. (2023): The utility of airborne hyperspectral and satellite multispectral images in identifying Natura 2000 non-forest habitats for conservation purposes. Sci Rep 13, 4549. https://doi.org/10.1038/s41598-023-31705-6

 

Please login or register to post comments.