X

NV5 Geospatial Blog

Each month, NV5 Geospatial posts new blog content across a variety of categories. Browse our latest posts below to learn about important geospatial information or use the search bar to find a specific topic or author. Stay informed of the latest blog posts, events, and technologies by joining our email list!



Not All Supernovae Are Created Equal: Rethinking the Universe’s Measuring Tools

Not All Supernovae Are Created Equal: Rethinking the Universe’s Measuring Tools

6/3/2025

Rethinking the Reliability of Type 1a Supernovae   How do astronomers measure the universe? It all starts with distance. From gauging the size of a galaxy to calculating how fast the universe is expanding, measuring cosmic distances is essential to understanding everything in the sky. For nearby stars, astronomers use... Read More >

Using LLMs To Research Remote Sensing Software: Helpful, but Incomplete

Using LLMs To Research Remote Sensing Software: Helpful, but Incomplete

5/26/2025

Whether you’re new to remote sensing or a seasoned expert, there is no doubt that large language models (LLMs) like OpenAI’s ChatGPT or Google’s Gemini can be incredibly useful in many aspects of research. From exploring the electromagnetic spectrum to creating object detection models using the latest deep learning... Read More >

From Image to Insight: How GEOINT Automation Is Changing the Speed of Decision-Making

From Image to Insight: How GEOINT Automation Is Changing the Speed of Decision-Making

4/28/2025

When every second counts, the ability to process geospatial data rapidly and accurately isn’t just helpful, it’s critical. Geospatial Intelligence (GEOINT) has always played a pivotal role in defense, security, and disaster response. But in high-tempo operations, traditional workflows are no longer fast enough. Analysts are... Read More >

Thermal Infrared Echoes: Illuminating the Last Gasp of a Dying Star

Thermal Infrared Echoes: Illuminating the Last Gasp of a Dying Star

4/24/2025

This blog was written by Eli Dwek, Emeritus, NASA Goddard Space Flight Center, Greenbelt, MD and Research Fellow, Center for Astrophysics, Harvard & Smithsonian, Cambridge, MA. It is the fifth blog in a series showcasing our IDL® Fellows program which supports passionate retired IDL users who may need support to continue their work... Read More >

A New Era of Hyperspectral Imaging with ENVI® and Wyvern’s Open Data Program

A New Era of Hyperspectral Imaging with ENVI® and Wyvern’s Open Data Program

2/25/2025

This blog was written in collaboration with Adam O’Connor from Wyvern.   As hyperspectral imaging (HSI) continues to grow in importance, access to high-quality satellite data is key to unlocking new insights in environmental monitoring, agriculture, forestry, mining, security, energy infrastructure management, and more.... Read More >

1345678910Last
17301 Rate this article:
.5

Converting an indexed image into an RGB image

Anonym

Here’s an example of how to convert an indexed image into an RGB image. Though they require more memory, I often find RGB images easier to work with because I don’t have to deal with color tables: I invariably forget to read the color table of an indexed image or pass the color table to a display routine in IDL. Start by reading an indexed image from a PNG file in IDL’s examples/data directory:

 IDL> f = file_which('africavlc.png') IDL> img = read_image(f, r, g, b) IDL> help, img, r, g, b IMG BYTE = Array[540, 560] R BYTE = Array[256] G BYTE = Array[256] B BYTE = Array[256]

The variable img is a two-dimensional array. The value of each element of img is mapped as an index into the arrays r, g and b; this is what gives each pixel of the image its RGB color[1]. Visualize the image with:

 IDL> i_idx = image(img, rgb_table=[[r],[g],[b]])

To create a single RGB image from these four arrays, perform the following array concatentation[2]:

 IDL> rgb = [[[r[img]]], [[g[img]]], [[b[img]]]] IDL> help, rgb RGB BYTE = Array[540, 560, 3]

This makes an RGB image with band sequential interleaving. Use TRANSPOSE to convert it to a pixel-interleaved RGB image:

 IDL> rgb = transpose(rgb, [2,0,1]) IDL> help, rgb RGB BYTE = Array[3, 540, 560]

View the result with:

 IDL> i_rgb = image(rgb)

Last, write the RGB image to a new PNG file:

 IDL> write_png, 'africavlc_rgb.png', rgb

An RGB image created from an indexed image


[1] For example, the value of img at [200,300] is 65. The RGB triple formed by [r[65], g[65], b[65]] is [50, 145, 19], the greenish color you see at this location in img.
[2] The values of img are being used as subscripts into the arrays r, g and b, so r[img] is a 540 x 560 array of 8-bit intensities in the red channel. Doing the same for g and b provides the intensities for the green and blue channels. (This is the inverse of [1]!) Experiment with img as a simple 2 x 2 array of colors to see how this works.
Please login or register to post comments.