X

NV5 Geospatial Blog

Each month, NV5 Geospatial posts new blog content across a variety of categories. Browse our latest posts below to learn about important geospatial information or use the search bar to find a specific topic or author. Stay informed of the latest blog posts, events, and technologies by joining our email list!



Not All Supernovae Are Created Equal: Rethinking the Universe’s Measuring Tools

Not All Supernovae Are Created Equal: Rethinking the Universe’s Measuring Tools

6/3/2025

Rethinking the Reliability of Type 1a Supernovae   How do astronomers measure the universe? It all starts with distance. From gauging the size of a galaxy to calculating how fast the universe is expanding, measuring cosmic distances is essential to understanding everything in the sky. For nearby stars, astronomers use... Read More >

Using LLMs To Research Remote Sensing Software: Helpful, but Incomplete

Using LLMs To Research Remote Sensing Software: Helpful, but Incomplete

5/26/2025

Whether you’re new to remote sensing or a seasoned expert, there is no doubt that large language models (LLMs) like OpenAI’s ChatGPT or Google’s Gemini can be incredibly useful in many aspects of research. From exploring the electromagnetic spectrum to creating object detection models using the latest deep learning... Read More >

From Image to Insight: How GEOINT Automation Is Changing the Speed of Decision-Making

From Image to Insight: How GEOINT Automation Is Changing the Speed of Decision-Making

4/28/2025

When every second counts, the ability to process geospatial data rapidly and accurately isn’t just helpful, it’s critical. Geospatial Intelligence (GEOINT) has always played a pivotal role in defense, security, and disaster response. But in high-tempo operations, traditional workflows are no longer fast enough. Analysts are... Read More >

Thermal Infrared Echoes: Illuminating the Last Gasp of a Dying Star

Thermal Infrared Echoes: Illuminating the Last Gasp of a Dying Star

4/24/2025

This blog was written by Eli Dwek, Emeritus, NASA Goddard Space Flight Center, Greenbelt, MD and Research Fellow, Center for Astrophysics, Harvard & Smithsonian, Cambridge, MA. It is the fifth blog in a series showcasing our IDL® Fellows program which supports passionate retired IDL users who may need support to continue their work... Read More >

A New Era of Hyperspectral Imaging with ENVI® and Wyvern’s Open Data Program

A New Era of Hyperspectral Imaging with ENVI® and Wyvern’s Open Data Program

2/25/2025

This blog was written in collaboration with Adam O’Connor from Wyvern.   As hyperspectral imaging (HSI) continues to grow in importance, access to high-quality satellite data is key to unlocking new insights in environmental monitoring, agriculture, forestry, mining, security, energy infrastructure management, and more.... Read More >

1345678910Last
«July 2025»
SunMonTueWedThuFriSat
293012345
6789101112
13141516171819
20212223242526
272829303112
3456789
15238 Rate this article:
3.5

Spatiotemporal Analysis: Red is Fled, Blue is New!

Zachary Norman

A great way to get additional information from imagery is to add changes over time to your analysis or workflow, and that is the focus of this blog. Spatiotemporal analysis has some potentially useful applications and one example is trying to determine when it is time to harvest a crop. Another use case is where spatiotemporal analysis can be used to detect where objects have appeared or disappeared in images. For this case, I'm going to outline the workflow I created to detect where airplanes appeared or disappeared from an airport.

 

The data that I had available was five Worldview 2 images over an airport in Rio De Janero. Here is a context map showing where the images are located:

 

Below is an animation showing what each image looks like in the data series. Note that you can see the buildings move on the left side of the image because of the change in the orientation of the satellite. This introduces some false-positives in the change detection workflow which can be seen in the results.

 

 

 

 

To perform the change detection on these images I used a pixel based change detection which is very similar to the Image Change Workflow, but it was written with the ENVI API and IDL. The reason I used the API to do this analysis is because there were a lot of steps that needed to be taken and it is a lot easier to create a workflow in IDL rather than use all of the separate tools in the ENVI Workbench for many images. Here was the approach that I took to perform the analysis.

 

1) Open Time One image and Time Two image for preprocessing using the following tasks:

RadiometricCalibration (for Top-of-Atmosphere Reflectance)
NNDiffusePanSharpening
RPCOrthorectification
SubsetRaster (with an ROI)


2) Register the two images together with the tasks:

 

GenerateTiePOintsByCrossCorreclation
FilterTiePOintsByGlobalTransform
ImageToImageRegistration


3) Find the intersection of the rasters

 

 

From steps 1 and 2 above, we can get some differences in the image sizes for Time 1 and Time 2. Although this difference change is small, the pixel based change detection cannot happen without the images having the exact same dimensions. To find the intersection of the two rasters and regrid each one to have the same dimensions, I followed the example outlined here which uses the intersection method for ENVIGridDefinition objects.


4) Perform the pixel-based change detection with the following tasks (taken from the Image Change Workflow)

 

 

RadiometricNormalization (Time 2 normalized to TIme 1)
ImageBandDifference
AutoChangeThresholdClassification (Kapur threshold method)
ClassificationSmoothing
ClassificationAggregation

 

 

After applying the changes to each pair of images, I produced 4 change detection images and the results are shown below. The red pixels correspond to pixel values decreasing and blue represents increases in a pixels value. An easy way to remember this is "red is fled, blue is new." Note how there are quite a few false-positives around the edges of the images due to the differences in the satellite's orientation. Apart from this, the change detection does a very good job of finding where planes have moved.

 

Please login or register to post comments.