X

NV5 Geospatial Blog

Each month, NV5 Geospatial posts new blog content across a variety of categories. Browse our latest posts below to learn about important geospatial information or use the search bar to find a specific topic or author. Stay informed of the latest blog posts, events, and technologies by joining our email list!



Comparing Amplitude and Coherence Time Series With ICEYE US GTR Data and ENVI SARscape

Comparing Amplitude and Coherence Time Series With ICEYE US GTR Data and ENVI SARscape

12/3/2025

Large commercial SAR satellite constellations have opened a new era for persistent Earth monitoring, giving analysts the ability to move beyond simple two-image comparisons into robust time series analysis. By acquiring SAR data with near-identical geometry every 24 hours, Ground Track Repeat (GTR) missions minimize geometric decorrelation,... Read More >

Empowering D&I Analysts to Maximize the Value of SAR

Empowering D&I Analysts to Maximize the Value of SAR

12/1/2025

Defense and intelligence (D&I) analysts rely on high-resolution imagery with frequent revisit times to effectively monitor operational areas. While optical imagery is valuable, it faces limitations from cloud cover, smoke, and in some cases, infrequent revisit times. These challenges can hinder timely and accurate data collection and... Read More >

Easily Share Workflows With the Analytics Repository

Easily Share Workflows With the Analytics Repository

10/27/2025

With the recent release of ENVI® 6.2 and the Analytics Repository, it’s now easier than ever to create and share image processing workflows across your organization. With that in mind, we wrote this blog to: Introduce the Analytics Repository Describe how you can use ENVI’s interactive workflows to... Read More >

Deploy, Share, Repeat: AI Meets the Analytics Repository

Deploy, Share, Repeat: AI Meets the Analytics Repository

10/13/2025

The upcoming release of ENVI® Deep Learning 4.0 makes it easier than ever to import, deploy, and share AI models, including industry-standard ONNX models, using the integrated Analytics Repository. Whether you're building deep learning models in PyTorch, TensorFlow, or using ENVI’s native model creation tools, ENVI... Read More >

Blazing a trail: SaraniaSat-led Team Shapes the Future of Space-Based Analytics

Blazing a trail: SaraniaSat-led Team Shapes the Future of Space-Based Analytics

10/13/2025

On July 24, 2025, a unique international partnership of SaraniaSat, NV5 Geospatial Software, BruhnBruhn Innovation (BBI), Netnod, and Hewlett Packard Enterprise (HPE) achieved something unprecedented: a true demonstration of cloud-native computing onboard the International Space Station (ISS) (Fig. 1). Figure 1. Hewlett... Read More >

1345678910Last
28760 Rate this article:
3.0

Custom Processing of LiDAR Data: An ENVI LiDAR API Example

Anonym

I recently presented a webinar about performing analysis on point cloud LiDAR data. This webinar was focused on how our ENVI LiDAR product can be extended using custom extensions written in IDL using the ENVI LiDAR API. A couple of my colleagues pitched in by providing me with some cool extension examples that can be used to extract valuable information from a LiDAR point cloud. Today, I would like to show one of these extension examples and walk through how it works. The extension I would like to show can be used to extract building footprints from a LiDAR point cloud. This example actually works quite well with low resolution point cloud data. So, if you are working with a point cloud that has fewer than 5 points per square meter, this method of extracting information might be of interest to you.

To understand how the extension works, let’s start by talking about LiDAR point cloud classifications. The American Society for Photogrammetry and Remote Sensing(ASPRS) maintains specifications for LAS file LiDAR (or other) point cloud data. ENVI LiDAR supports ASPRS LAS Specification Version 1.4. This specification maintains standard classification values for points in a point cloud which correspond to various different features such as ground, vegetation, buildings, and power lines. When a LAS file is processed in ENVI LiDAR, the classification value for each point in the point cloud is determined based on this specification. The table below shows the classification values that are computed when a point cloud is processed in ENVI LiDAR. Note that the buildings correspond to a classification value of 6. We will use this value in our extension to extract the building footprints.

When run, the extension first prompts a user to open a classified LAS or LAZ file. The extension then continues to run, scrolling through the point cloud, taking any point with a classification value of 6 and setting the point to an elevation of -10 meters, which is well below the elevation of the rest of the scene. It then writes out a new LAS point cloud file with buildings set to an elevation of -10 meters. The IDL code that makes the extension work is shown in the image below.

The image below shows what our new point cloud looks like with the building footprints dropped to a constant elevation of -10 meters. With our building footprints now set to a constant elevation of -10 meters, we can use the out-of-the-box functionality of ENVI LiDAR to produce a Digital Surface Model (DSM) of our scene.

The DSM produced from this point cloud can be brought into an image analysis software package, such as ENVI. There are a number of methods that could then be used to extract the building footprints, but I chose to run an unsupervised IsoData classification.The image below shows the extracted building footprints with a corresponding WorldView-2 image. In the portal window, you can also see the DSM that was produced from the point cloud. As you can see, this method worked quite nicely to extract the building footprints from the scene.

The cool thing about this simple extension is that it opens up a lot of possibilities for working with point cloud classification values. With a few minor tweaks to the code you could easily extract other features of interest from the scene. The ability to create custom tools is pretty cool because the sky is really the limit for what you can do with your LiDAR data.

Please login or register to post comments.