X

NV5 Geospatial Blog

Each month, NV5 Geospatial posts new blog content across a variety of categories. Browse our latest posts below to learn about important geospatial information or use the search bar to find a specific topic or author. Stay informed of the latest blog posts, events, and technologies by joining our email list!



Mapping Earthquake Deformation in Taiwan With ENVI

Mapping Earthquake Deformation in Taiwan With ENVI

12/15/2025

Unlocking Critical Insights With ENVI® Tools Taiwan sits at the junction of major tectonic plates and regularly experiences powerful earthquakes. Understanding how the ground moves during these events is essential for disaster preparedness, public safety, and building community resilience. But traditional approaches like field... Read More >

Comparing Amplitude and Coherence Time Series With ICEYE US GTR Data and ENVI SARscape

Comparing Amplitude and Coherence Time Series With ICEYE US GTR Data and ENVI SARscape

12/3/2025

Large commercial SAR satellite constellations have opened a new era for persistent Earth monitoring, giving analysts the ability to move beyond simple two-image comparisons into robust time series analysis. By acquiring SAR data with near-identical geometry every 24 hours, Ground Track Repeat (GTR) missions minimize geometric decorrelation,... Read More >

Empowering D&I Analysts to Maximize the Value of SAR

Empowering D&I Analysts to Maximize the Value of SAR

12/1/2025

Defense and intelligence (D&I) analysts rely on high-resolution imagery with frequent revisit times to effectively monitor operational areas. While optical imagery is valuable, it faces limitations from cloud cover, smoke, and in some cases, infrequent revisit times. These challenges can hinder timely and accurate data collection and... Read More >

Easily Share Workflows With the Analytics Repository

Easily Share Workflows With the Analytics Repository

10/27/2025

With the recent release of ENVI® 6.2 and the Analytics Repository, it’s now easier than ever to create and share image processing workflows across your organization. With that in mind, we wrote this blog to: Introduce the Analytics Repository Describe how you can use ENVI’s interactive workflows to... Read More >

Deploy, Share, Repeat: AI Meets the Analytics Repository

Deploy, Share, Repeat: AI Meets the Analytics Repository

10/13/2025

The upcoming release of ENVI® Deep Learning 4.0 makes it easier than ever to import, deploy, and share AI models, including industry-standard ONNX models, using the integrated Analytics Repository. Whether you're building deep learning models in PyTorch, TensorFlow, or using ENVI’s native model creation tools, ENVI... Read More >

1345678910Last
19174 Rate this article:
5.0

Fusing Point-Cloud Data With Imagery

Anonym

By now we've all seen the power of multi-sensor data fusion to facilitate situational awareness which enhances our ability to understand and interpret a specific environment. Taking the most valuable components of disparate data sources then fusing them together can enrich contextual analysis and help us make better decisions based on the extraction of meaningful information from the fused data. When working with geospatial data such as LiDAR point-clouds and high-resolution imagery a relatively simple yet powerful technique is to utilize the georeferencing spatial reference metadata to encode each 3D point with corresponding image pixel values based on data geopositioning. This enables more realistic 3D visualization of the point-cloud data since the points can be displayed using colors derived from an alternate raster data source.

Fortunately the LAS format specification provides the ability to store RGB color information for every point stored in a *.las file. However, when a LiDAR data collection project is performed it does not always include cotemporal image acquisition so the process of coloring a point-cloud may need to be executed at a later time using raster data from a variety of sensors (e.g. EO/IR, SAR, etc.). For example, some of the Elevation Source Data (3DEP) available for download from The National Map does not include the RGB color information so it can be beneficial to also download corresponding High-Resolution Orthoimagery (HRO) then fuse the two datasets together.

With this in mind we have been working diligently on a new "Color Point Cloud" tool (and corresponding programmatic API task) within the upcoming ENVI 6.0 software version planned for release later this year. The new "Color Point Cloud" tool+task will allow users to process 3D point-cloud data along with any geographically overlapping raster dataset to generate a new output LAS 1.2 format *.las file which is RGB encoded with pixel values from user-selected image bands. This new processing capability also allows the user decide how to handle points that fall outside the spatial extent of the raster imagery by either removing the data from the generated output *.las result or simply coloring them all black (RGB=0,0,0):

Screenshot of ENVI's new "Color Point Cloud" Tool

Consider the USGS LiDAR Point-Cloud (LPC) source data that can be downloaded from The National Map for San Francisco, CA. Since the LAS datasets do not include RGB encoding a 3D point-cloud visualization will typically involve a simple colormap based on height attributes perhaps with shading based on intensity. While specific features are clearly visible in this style of data visualization it can be difficult to visually interpret the point-cloud:

Data downloaded from The National Map courtesy of USGS

 

Fusing this point-cloud data with the 1-foot resolution imagery also available for this region yields a much more realistic visual representation:

 

 

Data downloaded from The National Map courtesy of USGS

 

Keep in mind there's no rule that says the point-cloud RGB encoding must come Red | Green | Blue image channels which is why ENVI's "Color Point Cloud" tool+task is very flexible and allows the user to select any 3 bands from any raster dataset. For example, users can also utilize infrared bands from multispectral or hyperspectral datasets to obtain more complex coloring of the point-cloud data such as a CIR representation:

 

 

Data downloaded from The National Map courtesy of USGS

 

Moving forward we plan to support other point-cloud storage formats such as BPF (Binary Point File) and SIPC (Sensor Independent Point Cloud) that provide the ability to store even more per-point auxiliary attribute data that will enable not just visualization but also specialized algorithm development for automated analysis of fused 3D data products.

Please login or register to post comments.