>  Docs Center  >  Libraries  >  Buie  >  ASTTERMS
Libraries

ASTTERMS

ASTTERMS

Name


  astterms

Purpose


  Evaulate the independent vectors to match an astrometric polynomial function.

Description



  This function is a support routine to ASTROM and handles part of the
  transformation between pixel (x,y) coordinates and the tangent plane
  coordinates (xi,eta). The transformation from (ra,dec) to (xi,eta)
  is not handled in this routine. The premise is that the transformation
  from the tangent plane to pixel coordinates can be done with a polynominal.
  I have implemented all of the common terms found in typical astrometric
  solutions. In practice, the high order terms are probably not needed
  except for very large fields or for highly distorted fields caused by
  excessive optics. Most CCD fields can be accurately modeled using just
  the linear terms.
  This function does NOT actually evaluate the transformation. Instead,
  the independent values for the polynominal are computed. The result is
  an array with (nterms,nvals) elements where nterms is the number of
  non-zero terms and nvals is the number of input x and y values (which must
  be of the same length. The table below lists the contents of the i^th
  column in the output array.

Category


  Astrometry

Calling Sequence


  val=astterms(x,y,terms)

Inputs


  x - X - coordinate (scalar or vector)
  y - Y - coordinate (scalar or vector)
  terms - Which terms are to be built, if this input is a 10-element
            integer array, then a 1 means use the term,
                                  0 means don't use it.
              0 - const (always use this)
              1 - x (always use this)
              2 - y (always use this)
              3 - r
              4 - x^2
              5 - y^2
              6 - x^3
              7 - y^3
              8 - xy^2
              9 - yx^2
        Another input option is provide where terms is an string array
            that contains the name of the term. The terms can appear in
            any order and any subset can be used. There is NO error
            checking to prevent duplicating a term (to save time). The
            terms that are supported are (the names must match, case is
            ignored):
            CONST, X, Y, XX, YY, XY, R (sqrt(x^2+y^2)), XXX, YYY, XYY, XXY,
            XXXX, YYYY, XYYY, XXYY, XXXY, XXXXX, YYYYY, XYYYY, XXYYY, XXXYY,
            XXXXY, T1, T2, T3, T4, T5, U1, U2, U3, U4, U5
        The terms labeled 'T' and 'U' are Chebyshev polynomials, with order
            begin given by the repetition of X or Y, (ie., TXX is second order
            of degree 1; TXYYY is 1st order in X times 3rd order in Y for
            degree 1.
        Complete list: (CONST applied to all forms)
            degree 1
            TX, TY, TXX, TXY,TYY, TXXX, TXXY, TXYY, TYYY,
            TXXXX, TXYYY, TXXYY, TXXXY, TYYYY,
            TXXXXX, TXYYYY, TXXYYY, TXXXYY, TXXXXY, TYYYYY
            degree 2
            UX, UY, UXX, UXY, UYY, UXXX, UXXY, UXYY, UYYY,
            UXXXX, UXYYY, UXXYY, UXXXY, UYYYY,
            UXXXXX, UXYYYY, UXXYYY, UXXXYY, UXXXXY, UYYYYY
        The terms labeled L are Legendre polynomials with M=0
            PX, PY, PXX, PXY, PYY, PXXX, PXXY, PXYY, PYYY,
            PXXXX, PXYYY, PXXYY, PXXXY, PYYYY,
            PXXXXX, PXYYYY, PXXYYY, PXXXYY, PXXXXY, PYYYYY

Optional Input Parameters


Keyword Input Parameters


Outputs


  return value - Dependent value(s), if x,y was 1-d then this will be scalar.

Keyword Output Parameters


Common Blocks


Side Effects


Restrictions


Procedure


Modification History


  1997/06/17, Written by Marc W. Buie, Lowell Observatory
  2009/10/25, MWB, added string input option for terms
  2009/12/10, MWB, added 4th order terms (names option only)
  2010/02/24, Chris Sauro, added Chebyshev terms
  2010/02/28, MWB, filled out Chebyshev and added Legendre
  2010/03/31, MWB, added 6th order Legendre



© 2024 NV5 Geospatial Solutions, Inc. |  Legal
   Contact Us