>  Docs Center  >  Libraries  >  Buie  >  MCMCSAMP
Libraries

MCMCSAMP

MCMCSAMP

Name


  mcmcsamp

Purpose (one Line Only)


  Markov-chain Monte-Carlo sampling tool

Description


Category


  Statistics

Calling Sequence


  mcmcsamp,vals,scale,region,pdf

Inputs


  vals - n-dimensional vector with initial guess for solution
  scale - inital estimate of size of variation to sample, roughly 2x of
            the expected standard deviation. One value per input variable.
            If burn-in is running, this input information is modified and will
            contain the final dynamically determined values.
  region - size of sampling region, roughly 5x bigger than scale. One value
            per input variable.

Optional Input Parameters


Keyword Input Parameters


  FUNCTION_NAME - [REQUIRED!!!] Name of function that evaluates the merit
            function being minimized and sampled. This function must take
            a single vector of input (ie., vals) and will return a scalar
            value (typically a chi-squared metric).
  NSTEPS - Number of samples to collect in the chain. Default=1000
  NOBURNIN - Flag, if set, will suppress any burn-in calculations and
                vals/scale are assumed to already be fully tuned and ready
                to go. With judicious use of the input arguments you can,
                if desired, fully control the burn-in process if the built-in
                algorithm is not effective.
  VERBOSE - Flag, if set, will generate some verbose comments to be printed
            during operation. Default is no printed output.
  DISPLAY - Flag, if set, will provide output graphics to watch the sampling
            process.

Outputs


  pdf - [NxM] array that is the Markov chain. N is the dimenison of vals
            and M is the number of steps requested.

Keyword Output Parameters


  ACCEPTANCE - Scalar value that is the total acceptance rate for the returned
                  chain (does not include burn-in).

Common Blocks


Side Effects


Restrictions


Procedure


Modification History


  2016/12/22, Written by Marc W. Buie, Southwest Research Institute with
                input from Alex Parker.
  2017/01/06, modified to allow imposing restricted domains for sampling



© 2024 NV5 Geospatial Solutions, Inc. |  Legal
   Contact Us