>  Docs Center  >  Libraries  >  ASTROLIB  >  LSF_ROTATE
Libraries

LSF_ROTATE

LSF_ROTATE

Name


    LSF_ROTATE:

Purpose


    Create a 1-d convolution kernel to broaden a spectrum from a rotating star

Explanation


    Can be used to derive the broadening effect (line spread function; LSF)
    due to rotation on a synthetic stellar spectrum. Assumes constant
    limb darkening across the disk.

Calling Sequence


    lsf = LSF_ROTATE(deltav, vsini, EPSILON=, VELGRID=)

Input Parameters


    deltaV - numeric scalar giving the step increment (in km/s) in the output
            rotation kernel.
    Vsini - the rotational velocity projected along the line of sight (km/s)

Output Parameters


    LSF - The convolution kernel vector for the specified rotational velocity.
          The number of points in LSF will be always be odd (the kernel is
          symmetric) and equal to either ceil(2*Vsini/deltav) or
          ceil(2*Vsini/deltav) +1 (whichever number is odd). LSF will
          always be of type FLOAT.
          To actually compute the broadening. the spectrum should be convolved
          with the rotational LSF.

Optional Input Parameters


    Epsilon - numeric scalar giving the limb-darkening coefficient,
          default = 0.6 which is typical for photospheric lines. The
          specific intensity I at any angle theta from the specific intensity
          Icen at the center of the disk is given by:
 
          I = Icen*(1-epsilon*(1-cos(theta))
                   

Optional Output Parameter


    Velgrid - Vector with the same number of elements as LSF

Example


    (1) Plot the LSF for a star rotating at 90 km/s in both velocity space and
        for a central wavelength of 4300 A. Compute the LSF every 3 km/s
      IDL> lsf = lsf_rotate(3,90,velgrid=vel) ;LSF will contain 61 pts
      IDL> plot,vel,lsf ;Plot the LSF in velocity space
      IDL> wgrid = 4300*(1+vel/3e5) ;Speed of light = 3e5 km/s
      IDL> oplot,wgrid,lsf ;Plot in wavelength space

Notes


    Adapted from rotin3.f in the SYNSPEC software of Hubeny & Lanz
        .http://nova.astro.umd.edu/index.html Also see Eq. 17.12 in
    "The Observation and Analysis of Stellar Photospheres" by D. Gray (1992)

Revision History


    Written, W. Landsman November 2001



© 2024 NV5 Geospatial Solutions, Inc. |  Legal
   Contact Us