The IDLmlSVMPolynomialKernel class encapsulates SVM (Support Vector Machine) parameters that help define a polynomial kernel with the following formula:
Example
Kernel = IDLmlSVMPolynomialKernel()
Model = IDLmlSupportVectorMachineClassification(2, 4, KERNEL=Kernel)
Syntax
Kernel = IDLmlSVMPolynomialKernel([, Keywords=value])
Arguments
None
Keywords
BIAS (optional)
Set this keyword to a bias term in the kernel. The default value is 1.0.
GAMMA (optional)
Set this keyword to a gamma term in the kernel. The default value is 1 / NATTRIBUTES, but the optimal value for any particular model is highly variable and will likely need to be adjusted. You should perform a grid search for parameter selection as described in Hsu, Chang, and Lin (2010).
References
Chih-Chung Chang and Chih-Jen Lin, LIBSVM: a library for support vector machines. ACM Transactions on Intelligent Systems and Technology, 2:27:1--27:27, 2011. Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm.
Hsu, C.-W., C.-C. Chang, and C.-J. Lin. (2010). A practical guide to support vector classification. National Taiwan University. http://ntu.csie.org/~cjlin/papers/guide/guide.pdf.
Wu, T.-F., C.-J. Lin, and R. C. Weng. (2004). Probability estimates for multi-class classification by pairwise coupling. Journal of Machine Learning Research, 5:975-1005, http://www.csie.ntu.edu.tw/~cjlin/papers/svmprob/svmprob.pdf.
DEGREE (optional)
Set this keyword to a value greater than or equal to 1, indicating the degree of the polynomial kernel. The default value is 2.
Version History
See Also
IDLmlSVMLinearKernel, IDLmlSVMRadialKernel, IDLmlSVMSigmoidKernel