This task outputs global normalization statistics from an aggregate of rasters.
            Example
            
            e = ENVI()
             
            
            RasterFile = Filepath('qb_boulder_msi', Subdir=['data'], $
            Root_Dir=e.Root_Dir)
            Raster = e.OpenRaster(RasterFile)
             
            
            StatsTask = ENVITask('NormalizationStatistics')
             
            
            StatsTask.INPUT_RASTERS = Raster
             
            
            StatsTask.Execute
             
            
            Print, "Normalization [Min, Max]:"
            Print, StatsTask.Normalization
            Syntax
            Result = ENVITask('NormalizationStatistics')
            Input parameters (Set, Get): INPUT_RASTERS, REMOVE_OUTLIERS
            Output parameters (Get only): NORMALIZATION
            Parameters marked as "Set" are those that you can set to specific values. You can also retrieve their current values any time. Parameters marked as "Get" are those whose values you can retrieve but not set.
            Input Parameters
            INPUT_RASTERS (required)
            Specify one or more rasters to determine the minimum and maximum data values.
            REMOVE_OUTLIERS (optional)
            The default of true removes outliers using histogram stretching to increase the minimum and decrease the maximum data values. If set to false, use the true minimum and maximum data ranges to normalize the data.
            Output Parameters
            NORMALIZATION
            Minimum and maximum data values from an aggregate of rasters.
            Methods
            Execute
            Parameter
            ParameterNames
            See ENVI Help for details on these ENVITask methods. 
            Properties
            DESCRIPTION
             DISPLAY_NAME
            NAME
             REVISION
            See the ENVITask topic in ENVI Help for details. 
            Version History
            
                                 
                                 
                                     
                        | Machine Learning 2.0 | Introduced | 
                     
                        | Machine Learning 3.0.1 | Added REMOVE_OUTLIERS parameter |