This task detects the samples that have a substantially lower density than its neighbors and labels the detections as anomalies.
            For background on the algorithm used, see Local Outlier Factor Classification.
            Example
            
            e = ENVI()
             
            
            RasterFile = Filepath('qb_boulder_msi', Subdir=['data'], $
              Root_Dir=e.Root_Dir)
            Raster = e.OpenRaster(RasterFile)
             
            
            SpectralTask=ENVITask('SpectralIndex')
             
            
            SpectralTask.INDEX = 'Normalized Difference Vegetation Index'
            SpectralTask.INPUT_RASTER = Raster
             
            
            SpectralTask.Execute
             
            
            ThresholdROITask=ENVITask('ImageThresholdToROI')
             
            
            ThresholdROITask.INPUT_RASTER = SpectralTask.OUTPUT_RASTER
            ThresholdROITask.ROI_NAME = 'Water'
            ThresholdROITask.ROI_COLOR = [0, 0, 255]
            ThresholdROITask.THRESHOLD = [-1, -0.10000000149012, 0]
             
            
            ThresholdROITask.Execute
             
            
            StatsTask = ENVITask('NormalizationStatistics')
             
            
            StatsTask.INPUT_RASTERS = Raster
             
            
            StatsTask.Execute
             
            
            DataPrepTask = ENVITask('MLTrainingDataFromROIs')
             
            
            DataPrepTask.INPUT_RASTER = Raster
            DataPrepTask.INPUT_ROI = ThresholdROITask.OUTPUT_ROI
            DataPrepTask.BACKGROUND_LABELS = []
            DataPrepTask.NORMALIZE_MIN_MAX = StatsTask.Normalization
            DataPrepTask.Execute
             
            
            TrainTask = ENVITask('TrainLocalOutlierFactor')
             
            
            TrainTask.INPUT_RASTER = DataPrepTask.OUTPUT_RASTER
             
            
            TrainTask.Execute
             
            
            outputModelUri = TrainTask.OUTPUT_MODEL_URI
            print, 'Model URI: ' + outputModelUri
             
            outputModel = TrainTask.OUTPUT_MODEL
            print, outputModel.Attributes
            Syntax
            Result = ENVITask('TrainLocalOutlierFactor')
            Input parameters (Set, Get): INPUT_RASTERS, LEAF_SIZE, MODEL_DESCRIPTION, MODEL_NAME, MODEL_VERSION, OUTPUT_MODEL_URI
            Output parameters (Get only): OUTPUT_MODEL
            Parameters marked as "Set" are those that you can set to specific values. You can also retrieve their current values any time. Parameters marked as "Get" are those whose values you can retrieve but not set.
            Input Parameters
            INPUT_RASTERS (required)
            Specify one or more preprocessed training rasters to be used for training.
            LEAF_SIZE (optional)
            Specify the leaf size. Changing the leaf size can affect the speed of construction and query, as well as the memory required to store the tree. The optimal value depends on the nature of the problem. The default is 30.
            MODEL_DESCRIPTION (optional)
            Specify the purpose of the model.
            MODEL_NAME (optional)
            Specify the name of the model. The default is Local Outlier Factor Anomaly Detector.
            MODEL_VERSION (optional)
            Specify a semantic version format (MAJOR.MINOR.PATCH) for the trained model (for example, 1.0.0). The version may indicate the following:
                             - MAJOR: Breaking changes to the model 
- MINOR: Compatibility or new features
- PATCH: Minor adjustments
OUTPUT_MODEL_URI (optional)
            Specify a string with the fully qualified filename and path of the associated OUTPUT_MODEL. If you do not specify this parameter, or set it to an exclamation symbol (!), a temporary file will be created.
            Output Parameters
            OUTPUT_MODEL
            This is a reference to the output model file.
            Methods
            Execute
            Parameter
            ParameterNames
            See ENVI Help for details on these ENVITask methods. 
            Properties
            DESCRIPTION
             DISPLAY_NAME
            NAME
             REVISION
            See the ENVITask topic in ENVI Help for details. 
            Version History
            
                                 
                                 
                                     
                        | Machine Learning 2.0 | Introduced | 
                     
                        | Machine Learning 6.2 | Added the MODEL_VERSION and OUTPUT_MODEL_URI parameters | 
                 
            
            See Also
            ENVI Machine Learning Algorithms Background, TrainExtraTrees Task, TrainIsolationForest Task, TrainKNeighbors Task, TrainLinearSVM Task, TrainNaiveBayes Task, TrainRandomForest Task, TrainRBFSVM Task