This task creates a set of decision trees from a randomly selected subset of the training set.
            For background on the algorithm used, see Random Forest Classification.
            Example
            
            e = ENVI()
             
            
            RasterFile = Filepath('qb_boulder_msi', Subdir=['data'], $
              Root_Dir=e.Root_Dir)
            Raster = e.OpenRaster(RasterFile)
             
            
            ROIFile = Filepath('qb_boulder_roi.xml', Subdir=['data'], $
            Root_Dir=e.Root_Dir)
            ROI = e.OpenROI(ROIFile)
             
            
            StatsTask = ENVITask('NormalizationStatistics')
             
            
            StatsTask.INPUT_RASTERS = Raster
             
            
            StatsTask.Execute
             
            
            DataPrepTask = ENVITask('MLTrainingDataFromROIs')
             
            
            DataPrepTask.INPUT_RASTER = Raster
            DataPrepTask.INPUT_ROI = ROI
            DataPrepTask.BACKGROUND_LABELS = ['Disturbed Earth', 'Water']
            DataPrepTask.NORMALIZE_MIN_MAX = StatsTask.Normalization
            DataPrepTask.Execute
             
            
            TrainTask = ENVITask('TrainRandomForest')
             
            
            TrainTask.INPUT_RASTER = DataPrepTask.OUTPUT_RASTER
            TrainTask.NUM_ESTIMATORS = 100
             
            
            TrainTask.Execute
             
            
            outputModelUri = TrainTask.OUTPUT_MODEL_URI
            print, 'Model URI: ' + outputModelUri
             
            outputModel = TrainTask.OUTPUT_MODEL
            print, outputModel.Attributes, /IMPLIED
            Syntax
            Result = ENVITask('TrainRandomForest')
            Input parameters (Set, Get): CUSTOM_MAX_FEATURES, BALANCE_CLASSES, INPUT_RASTERS, MAX_DEPTH, MAX_FEATURES, MODEL_DESCRIPTION, MODEL_NAME, MODEL_VERSION, NUM_ESTIMATORS, OOB_SCORE, OUTPUT_MODEL_URI, REMOVE_OUTLIERS
            Output parameters (Get only): OUTPUT_MODEL
            Parameters marked as "Set" are those that you can set to specific values. You can also retrieve their current values any time. Parameters marked as "Get" are those whose values you can retrieve but not set.
            Input Parameters
            BALANCE_CLASSES (optional)
            Specify whether all classes should be considered equal during training. This helps to account for classes with few samples compared to classes with many examples.
            CUSTOM_MAX_FEATURES (optional)
            Specify the number of features to consider when looking for the best split. This parameter accepts a float or integer value. If specified, this value will override MAX_FEATURES.
            INPUT_RASTERS (required)
            Specify one or more preprocessed training rasters to be used for training.
            MAX_DEPTH (optional)
            Specify the number of decision trees to use. The estimators are the predictors of the algorithm. The default is 100.
            MAX_FEATURES (optional)
            Specify the number of features to consider when looking for the best split. This parameter offers options sqrt or log2 string literals. The default is sqrt.
            MODEL_DESCRIPTION (optional)
            Specify the purpose of the model.
            MODEL_NAME (optional)
            Specify the name of the model. The default is Random Forest Supervised Classifier.
            MODEL_VERSION (optional)
            Specify a semantic version format (MAJOR.MINOR.PATCH) for the trained model (for example, 1.0.0). The version may indicate the following:
                             - MAJOR: Breaking changes to the model 
- MINOR: Compatibility or new features
- PATCH: Minor adjustments
NUM_ESTIMATORS (optional)
            Specify the number of decision trees in the forest. Estimators are the predictors of the algorithm. The default is 100. The default is false.
            OOB_SCORE (optional)
            Specify whether to use out-of-bag samples to estimate the generalization score. The default is false. If set to true, the score will be stored in the OUTPUT_MODEL statistics report.
            OUTPUT_MODEL_URI (optional)
            Specify a string with the fully qualified filename and path of the associated OUTPUT_MODEL. If you do not specify this parameter, or set it to an exclamation symbol (!), a temporary file will be created.
            REMOVE_OUTLIERS (optional)
            The default of true removes outliers using histogram stretching to increase the minimum and decrease the maximum data values. If set to false, use the true minimum and maximum data ranges to normalize the data.
            Output Parameters
            OUTPUT_MODEL
            This is a reference to the output model file.
            Methods
            Execute
            Parameter
            ParameterNames
            See ENVI Help for details on these ENVITask methods. 
            Properties
            DESCRIPTION
             DISPLAY_NAME
            NAME
             REVISION
            See the ENVITask topic in ENVI Help for details. 
            Version History
            
                                 
                                 
                                     
                        | Machine Learning 2.0 | Introduced | 
                     
                        | Machine Learning 2.1 | Added MAX_FEATURES, CUSTOM_MAX_FEATURES, and OOB_SCORE parameters | 
                    
                        | Machine Learning 3.0.1 | Added REMOVE_OUTLIERS parameter | 
                    
                        | Machine Learning 6.2 | Added the MODEL_VERSION and OUTPUT_MODEL_URI parameters | 
                 
            
            See Also
            ENVI Machine Learning Algorithms Background, TrainBirch Task, TrainExtraTrees Task, TrainIsolationForest Task, TrainKNeighbors Task, TrainLinearSVM Task, TrainLocalOutlierFactor Task, TrainMiniBatchKMeans Task, TrainNaiveBayes Task, TrainRBFSVM Task