The IMSL_BETA function evaluates the real beta function β(X, Y).
This routine requires an IDL Advanced Math and Stats license. For more information, contact your sales or technical support representative.
The beta function, β(x, y), is defined as:
requiring that X > 0 and Y > 0. It underflows for large parameters.
Example
Plot the beta function over [ε, 1/4 + ε] x [ε, 1/4 + ε] for ε = 0.01. The results are shown in the Real Beta Function Plot after the code example.
x = 1e-2 + .25 * FINDGEN(25)/24 y = x
b = FLTARR(25, 25)
FOR i = 0, 24 DO b(i, *) = IMSL_BETA(x(i), y)
SURFACE, b, x, y, XTitle = 'X', YTitle = 'Y', Az = 320, ZAxis = 2
Errors
Alert Errors
MATH_BETA_UNDERFLOW: Parameters must not be so large that the result underflows.
Fatal Errors
MATH_ZERO_ARG_OVERFLOW: One of the parameters is so close to zero that the result overflows.
Syntax
Result = IMSL_BETA(X, Y [, /DOUBLE])
Return Value
The value of the beta function β(x, y). If no result can be computed, then NaN (Not a Number) is returned.
Arguments
X
First beta parameter. It must be positive.
Y
Second beta parameter. It must be positive.
Keywords
DOUBLE (optional)
If present and nonzero, double precision is used.
Version History
See Also
IMSL_BETACDF, IMSL_BETAI